Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
63.1-a5 63.1-a \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 7 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $6.896615437$ 0.325834452 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( a - 1\) , \( -a\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(a-1\right){x}-a$
567.1-a5 567.1-a \(\Q(\sqrt{-7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.659627205$ $2.298871812$ 2.292578873 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 18 a - 3\) , \( 10 a + 36\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(18a-3\right){x}+10a+36$
4032.1-c5 4032.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.438321771$ 1.843198006 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 11 a - 20\) , \( -38 a + 27\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(11a-20\right){x}-38a+27$
4032.7-c5 4032.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.438321771$ 1.843198006 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 6 a + 18\) , \( 21 a - 39\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(6a+18\right){x}+21a-39$
7056.1-c5 7056.1-c \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.303337809$ 1.970461553 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( 7 a - 79\) , \( 4 a - 287\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(7a-79\right){x}+4a-287$
7056.5-c5 7056.5-c \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.303337809$ 1.970461553 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -22 a + 82\) , \( -169 a - 61\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-22a+82\right){x}-169a-61$
16128.5-i6 16128.5-i \(\Q(\sqrt{-7}) \) \( 2^{8} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.746299208$ $1.724153859$ 3.890719903 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 33 a - 6\) , \( 54 a + 60\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(33a-6\right){x}+54a+60$
28224.1-d6 28224.1-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.371471872$ $0.921599003$ 2.070326753 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[a\) , \( a\) , \( a\) , \( -86 a + 145\) , \( -130 a - 556\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-86a+145\right){x}-130a-556$
28224.7-d6 28224.7-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.485887490$ $0.921599003$ 2.070326753 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -42 a - 122\) , \( -276 a - 520\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-42a-122\right){x}-276a-520$
36288.1-c6 36288.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812773923$ 1.228798671 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 111 a - 186\) , \( 722 a - 556\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(111a-186\right){x}+722a-556$
36288.7-c6 36288.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812773923$ 1.228798671 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 51 a + 158\) , \( -621 a + 894\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(51a+158\right){x}-621a+894$
39375.1-d6 39375.1-d \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 5^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $7.725929285$ $1.379323087$ 8.055596601 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[1\) , \( a\) , \( a + 1\) , \( 50 a - 10\) , \( -50 a - 197\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(50a-10\right){x}-50a-197$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.