Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
63.1-a5 |
63.1-a |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
63.1 |
\( 3^{2} \cdot 7 \) |
\( 3^{2} \cdot 7 \) |
$0.66607$ |
$(-2a+1), (3)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2$ |
2B |
$1$ |
\( 1 \) |
$1$ |
$6.896615437$ |
0.325834452 |
\( -\frac{2940226}{21} a + \frac{5920433}{21} \) |
\( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( a - 1\) , \( -a\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(a-1\right){x}-a$ |
567.1-a5 |
567.1-a |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
567.1 |
\( 3^{4} \cdot 7 \) |
\( 3^{14} \cdot 7 \) |
$1.15367$ |
$(-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.659627205$ |
$2.298871812$ |
2.292578873 |
\( -\frac{2940226}{21} a + \frac{5920433}{21} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( 18 a - 3\) , \( 10 a + 36\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(18a-3\right){x}+10a+36$ |
4032.1-c5 |
4032.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
4032.1 |
\( 2^{6} \cdot 3^{2} \cdot 7 \) |
\( 2^{18} \cdot 3^{2} \cdot 7 \) |
$1.88394$ |
$(a), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$2.438321771$ |
1.843198006 |
\( -\frac{2940226}{21} a + \frac{5920433}{21} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( 11 a - 20\) , \( -38 a + 27\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(11a-20\right){x}-38a+27$ |
4032.7-c5 |
4032.7-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
4032.7 |
\( 2^{6} \cdot 3^{2} \cdot 7 \) |
\( 2^{18} \cdot 3^{2} \cdot 7 \) |
$1.88394$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$2.438321771$ |
1.843198006 |
\( -\frac{2940226}{21} a + \frac{5920433}{21} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 6 a + 18\) , \( 21 a - 39\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(6a+18\right){x}+21a-39$ |
7056.1-c5 |
7056.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
7056.1 |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
\( 2^{12} \cdot 3^{2} \cdot 7^{7} \) |
$2.16684$ |
$(a), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.303337809$ |
1.970461553 |
\( -\frac{2940226}{21} a + \frac{5920433}{21} \) |
\( \bigl[a\) , \( a + 1\) , \( a\) , \( 7 a - 79\) , \( 4 a - 287\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(7a-79\right){x}+4a-287$ |
7056.5-c5 |
7056.5-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
7056.5 |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
\( 2^{12} \cdot 3^{2} \cdot 7^{7} \) |
$2.16684$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.303337809$ |
1.970461553 |
\( -\frac{2940226}{21} a + \frac{5920433}{21} \) |
\( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -22 a + 82\) , \( -169 a - 61\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-22a+82\right){x}-169a-61$ |
16128.5-i6 |
16128.5-i |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
16128.5 |
\( 2^{8} \cdot 3^{2} \cdot 7 \) |
\( 2^{24} \cdot 3^{2} \cdot 7 \) |
$2.66430$ |
$(a), (-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.746299208$ |
$1.724153859$ |
3.890719903 |
\( -\frac{2940226}{21} a + \frac{5920433}{21} \) |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( 33 a - 6\) , \( 54 a + 60\bigr] \) |
${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(33a-6\right){x}+54a+60$ |
28224.1-d6 |
28224.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28224.1 |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( 2^{18} \cdot 3^{2} \cdot 7^{7} \) |
$3.06438$ |
$(a), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.371471872$ |
$0.921599003$ |
2.070326753 |
\( -\frac{2940226}{21} a + \frac{5920433}{21} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( -86 a + 145\) , \( -130 a - 556\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-86a+145\right){x}-130a-556$ |
28224.7-d6 |
28224.7-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28224.7 |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( 2^{18} \cdot 3^{2} \cdot 7^{7} \) |
$3.06438$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.485887490$ |
$0.921599003$ |
2.070326753 |
\( -\frac{2940226}{21} a + \frac{5920433}{21} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -42 a - 122\) , \( -276 a - 520\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-42a-122\right){x}-276a-520$ |
36288.1-c6 |
36288.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.1 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{18} \cdot 3^{14} \cdot 7 \) |
$3.26308$ |
$(a), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.812773923$ |
1.228798671 |
\( -\frac{2940226}{21} a + \frac{5920433}{21} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 111 a - 186\) , \( 722 a - 556\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(111a-186\right){x}+722a-556$ |
36288.7-c6 |
36288.7-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{18} \cdot 3^{14} \cdot 7 \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.812773923$ |
1.228798671 |
\( -\frac{2940226}{21} a + \frac{5920433}{21} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 51 a + 158\) , \( -621 a + 894\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(51a+158\right){x}-621a+894$ |
39375.1-d6 |
39375.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
39375.1 |
\( 3^{2} \cdot 5^{4} \cdot 7 \) |
\( 3^{2} \cdot 5^{12} \cdot 7 \) |
$3.33037$ |
$(-2a+1), (3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$7.725929285$ |
$1.379323087$ |
8.055596601 |
\( -\frac{2940226}{21} a + \frac{5920433}{21} \) |
\( \bigl[1\) , \( a\) , \( a + 1\) , \( 50 a - 10\) , \( -50 a - 197\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(50a-10\right){x}-50a-197$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.