Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
28.2-a6 |
28.2-a |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28.2 |
\( 2^{2} \cdot 7 \) |
\( 2^{4} \cdot 7^{2} \) |
$0.54385$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2Cs, 3B.1.1 |
$1$ |
\( 2^{3} \) |
$1$ |
$7.878754216$ |
0.330876576 |
\( -\frac{15625}{28} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( 0\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}$ |
896.2-b6 |
896.2-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
896.2 |
\( 2^{7} \cdot 7 \) |
\( 2^{22} \cdot 7^{2} \) |
$1.29349$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{4} \) |
$1$ |
$2.785560266$ |
2.105685636 |
\( -\frac{15625}{28} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -3 a\) , \( 4 a - 1\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-3a{x}+4a-1$ |
896.7-b6 |
896.7-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
896.7 |
\( 2^{7} \cdot 7 \) |
\( 2^{22} \cdot 7^{2} \) |
$1.29349$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{4} \) |
$1$ |
$2.785560266$ |
2.105685636 |
\( -\frac{15625}{28} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( a - 3\) , \( -5 a + 3\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(a-3\right){x}-5a+3$ |
1568.2-b6 |
1568.2-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
1568.2 |
\( 2^{5} \cdot 7^{2} \) |
\( 2^{16} \cdot 7^{8} \) |
$1.48773$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$1$ |
$1.488944592$ |
2.251072633 |
\( -\frac{15625}{28} \) |
\( \bigl[a\) , \( -a\) , \( a\) , \( -11 a + 8\) , \( -16 a + 39\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-11a+8\right){x}-16a+39$ |
1568.5-b6 |
1568.5-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
1568.5 |
\( 2^{5} \cdot 7^{2} \) |
\( 2^{16} \cdot 7^{8} \) |
$1.48773$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$1$ |
$1.488944592$ |
2.251072633 |
\( -\frac{15625}{28} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 9 a - 3\) , \( 15 a + 23\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(9a-3\right){x}+15a+23$ |
1792.5-b6 |
1792.5-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
1792.5 |
\( 2^{8} \cdot 7 \) |
\( 2^{28} \cdot 7^{2} \) |
$1.53823$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$0.389689685$ |
$1.969688554$ |
2.320905398 |
\( -\frac{15625}{28} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -8\) , \( -16\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-8{x}-16$ |
2268.2-b6 |
2268.2-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
2268.2 |
\( 2^{2} \cdot 3^{4} \cdot 7 \) |
\( 2^{4} \cdot 3^{12} \cdot 7^{2} \) |
$1.63154$ |
$(a), (-a+1), (-2a+1), (3)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2Cs, 3B.1.2 |
$1$ |
\( 2^{5} \) |
$1$ |
$2.626251405$ |
3.970518914 |
\( -\frac{15625}{28} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -5\) , \( -7\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-5{x}-7$ |
6272.2-b6 |
6272.2-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
6272.2 |
\( 2^{7} \cdot 7^{2} \) |
\( 2^{22} \cdot 7^{8} \) |
$2.10397$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$0.817158102$ |
$1.052842818$ |
2.601420732 |
\( -\frac{15625}{28} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( 17 a + 8\) , \( -9 a + 109\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(17a+8\right){x}-9a+109$ |
6272.7-b6 |
6272.7-b |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
6272.7 |
\( 2^{7} \cdot 7^{2} \) |
\( 2^{22} \cdot 7^{8} \) |
$2.10397$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$0.817158102$ |
$1.052842818$ |
2.601420732 |
\( -\frac{15625}{28} \) |
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -19 a + 24\) , \( 15 a + 136\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-19a+24\right){x}+15a+136$ |
7168.5-h6 |
7168.5-h |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
7168.5 |
\( 2^{10} \cdot 7 \) |
\( 2^{34} \cdot 7^{2} \) |
$2.17539$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$1$ |
$1.392780133$ |
2.105685636 |
\( -\frac{15625}{28} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -8 a + 16\) , \( -16 a - 32\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-8a+16\right){x}-16a-32$ |
7168.7-h6 |
7168.7-h |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
7168.7 |
\( 2^{10} \cdot 7 \) |
\( 2^{34} \cdot 7^{2} \) |
$2.17539$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$1$ |
$1.392780133$ |
2.105685636 |
\( -\frac{15625}{28} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 8 a + 8\) , \( 16 a - 48\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(8a+8\right){x}+16a-48$ |
17500.2-f6 |
17500.2-f |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
17500.2 |
\( 2^{2} \cdot 5^{4} \cdot 7 \) |
\( 2^{4} \cdot 5^{12} \cdot 7^{2} \) |
$2.71924$ |
$(a), (-a+1), (-2a+1), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$1.876248795$ |
$1.575750843$ |
8.939617596 |
\( -\frac{15625}{28} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -13\) , \( 31\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-13{x}+31$ |
23548.4-c6 |
23548.4-c |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
23548.4 |
\( 2^{2} \cdot 7 \cdot 29^{2} \) |
\( 2^{4} \cdot 7^{2} \cdot 29^{6} \) |
$2.92871$ |
$(a), (-a+1), (-2a+1), (-4a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$1$ |
$1.463047928$ |
2.211920557 |
\( -\frac{15625}{28} \) |
\( \bigl[1\) , \( -a\) , \( 1\) , \( -4 a + 15\) , \( 25 a + 8\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-4a+15\right){x}+25a+8$ |
23548.6-e6 |
23548.6-e |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
23548.6 |
\( 2^{2} \cdot 7 \cdot 29^{2} \) |
\( 2^{4} \cdot 7^{2} \cdot 29^{6} \) |
$2.92871$ |
$(a), (-a+1), (-2a+1), (4a-3)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$1$ |
$1.463047928$ |
2.211920557 |
\( -\frac{15625}{28} \) |
\( \bigl[1\) , \( a - 1\) , \( 1\) , \( 4 a + 11\) , \( -25 a + 33\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(4a+11\right){x}-25a+33$ |
23716.4-g6 |
23716.4-g |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
23716.4 |
\( 2^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 2^{4} \cdot 7^{8} \cdot 11^{6} \) |
$2.93392$ |
$(a), (-a+1), (-2a+1), (-2a+3)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \) |
$1$ |
$0.897867372$ |
2.714895745 |
\( -\frac{15625}{28} \) |
\( \bigl[1\) , \( a + 1\) , \( 1\) , \( -28 a + 3\) , \( 119 a - 121\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-28a+3\right){x}+119a-121$ |
23716.6-e6 |
23716.6-e |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
23716.6 |
\( 2^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 2^{4} \cdot 7^{8} \cdot 11^{6} \) |
$2.93392$ |
$(a), (-a+1), (-2a+1), (2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \) |
$1$ |
$0.897867372$ |
2.714895745 |
\( -\frac{15625}{28} \) |
\( \bigl[1\) , \( -a - 1\) , \( 0\) , \( 30 a - 26\) , \( -148 a + 24\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(30a-26\right){x}-148a+24$ |
27104.13-c6 |
27104.13-c |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
27104.13 |
\( 2^{5} \cdot 7 \cdot 11^{2} \) |
\( 2^{16} \cdot 7^{2} \cdot 11^{6} \) |
$3.03351$ |
$(a), (-a+1), (-2a+1), (-2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \) |
$0.462919745$ |
$1.187766888$ |
3.325124285 |
\( -\frac{15625}{28} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 7 a - 24\) , \( -38 a + 100\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(7a-24\right){x}-38a+100$ |
27104.15-j6 |
27104.15-j |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
27104.15 |
\( 2^{5} \cdot 7 \cdot 11^{2} \) |
\( 2^{16} \cdot 7^{2} \cdot 11^{6} \) |
$3.03351$ |
$(a), (-a+1), (-2a+1), (2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \) |
$1.065481787$ |
$1.187766888$ |
7.653290664 |
\( -\frac{15625}{28} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 3 a + 20\) , \( 77 a - 49\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(3a+20\right){x}+77a-49$ |
27104.4-j6 |
27104.4-j |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
27104.4 |
\( 2^{5} \cdot 7 \cdot 11^{2} \) |
\( 2^{16} \cdot 7^{2} \cdot 11^{6} \) |
$3.03351$ |
$(a), (-a+1), (-2a+1), (-2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \) |
$1.065481787$ |
$1.187766888$ |
7.653290664 |
\( -\frac{15625}{28} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( -3 a + 24\) , \( -54 a + 11\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-3a+24\right){x}-54a+11$ |
27104.6-c6 |
27104.6-c |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
27104.6 |
\( 2^{5} \cdot 7 \cdot 11^{2} \) |
\( 2^{16} \cdot 7^{2} \cdot 11^{6} \) |
$3.03351$ |
$(a), (-a+1), (-2a+1), (2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \) |
$0.462919745$ |
$1.187766888$ |
3.325124285 |
\( -\frac{15625}{28} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -7 a - 17\) , \( 38 a + 62\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-7a-17\right){x}+38a+62$ |
28672.7-e6 |
28672.7-e |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.7 |
\( 2^{12} \cdot 7 \) |
\( 2^{40} \cdot 7^{2} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$1.403390075$ |
$0.984844277$ |
4.179140127 |
\( -\frac{15625}{28} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -33\) , \( -161\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-33{x}-161$ |
28672.7-o6 |
28672.7-o |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.7 |
\( 2^{12} \cdot 7 \) |
\( 2^{40} \cdot 7^{2} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.984844277$ |
1.488944592 |
\( -\frac{15625}{28} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -33\) , \( 161\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-33{x}+161$ |
38332.4-c6 |
38332.4-c |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
38332.4 |
\( 2^{2} \cdot 7 \cdot 37^{2} \) |
\( 2^{4} \cdot 7^{2} \cdot 37^{6} \) |
$3.30809$ |
$(a), (-a+1), (-2a+1), (-4a+5)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$1$ |
$1.295259214$ |
1.958247865 |
\( -\frac{15625}{28} \) |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 12 a + 3\) , \( a - 57\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(12a+3\right){x}+a-57$ |
38332.6-c6 |
38332.6-c |
$12$ |
$36$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
38332.6 |
\( 2^{2} \cdot 7 \cdot 37^{2} \) |
\( 2^{4} \cdot 7^{2} \cdot 37^{6} \) |
$3.30809$ |
$(a), (-a+1), (-2a+1), (4a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$1$ |
$1.295259214$ |
1.958247865 |
\( -\frac{15625}{28} \) |
\( \bigl[1\) , \( a\) , \( 1\) , \( -12 a + 15\) , \( -a - 56\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-12a+15\right){x}-a-56$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.