Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
49.1-a1 49.1-a \(\Q(\sqrt{-10}) \) \( 7^{2} \) 0 $\Z/2\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $4.796364224$ 1.516743543 \( 8000 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -4 a + 2\) , \( -2 a - 24\bigr] \) ${y}^2={x}^3+\left(-a+1\right){x}^2+\left(-4a+2\right){x}-2a-24$
49.1-a2 49.1-a \(\Q(\sqrt{-10}) \) \( 7^{2} \) 0 $\Z/2\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $4.796364224$ 1.516743543 \( 8000 \) \( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( a + 7\) , \( -a + 2\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^3+\left(-a-1\right){x}^2+\left(a+7\right){x}-a+2$
49.3-a1 49.3-a \(\Q(\sqrt{-10}) \) \( 7^{2} \) 0 $\Z/2\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $4.796364224$ 1.516743543 \( 8000 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 4 a + 2\) , \( 2 a - 24\bigr] \) ${y}^2={x}^3+\left(a+1\right){x}^2+\left(4a+2\right){x}+2a-24$
49.3-a2 49.3-a \(\Q(\sqrt{-10}) \) \( 7^{2} \) 0 $\Z/2\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $4.796364224$ 1.516743543 \( 8000 \) \( \bigl[a\) , \( a - 1\) , \( a + 1\) , \( -2 a + 7\) , \( 2\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^3+\left(a-1\right){x}^2+\left(-2a+7\right){x}+2$
529.1-a1 529.1-a \(\Q(\sqrt{-10}) \) \( 23^{2} \) 0 $\Z/2\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $2.646045189$ 0.836752959 \( 8000 \) \( \bigl[0\) , \( a\) , \( 0\) , \( -10 a - 25\) , \( -33 a + 24\bigr] \) ${y}^2={x}^3+a{x}^2+\left(-10a-25\right){x}-33a+24$
529.1-a2 529.1-a \(\Q(\sqrt{-10}) \) \( 23^{2} \) 0 $\Z/2\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $2.646045189$ 0.836752959 \( 8000 \) \( \bigl[a\) , \( a + 1\) , \( a + 1\) , \( -4 a - 3\) , \( 2 a + 16\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^3+\left(a+1\right){x}^2+\left(-4a-3\right){x}+2a+16$
529.3-a1 529.3-a \(\Q(\sqrt{-10}) \) \( 23^{2} \) 0 $\Z/2\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $2.646045189$ 0.836752959 \( 8000 \) \( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( 3 a - 3\) , \( -3 a + 16\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^3+\left(-a+1\right){x}^2+\left(3a-3\right){x}-3a+16$
529.3-a2 529.3-a \(\Q(\sqrt{-10}) \) \( 23^{2} \) 0 $\Z/2\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $2.646045189$ 0.836752959 \( 8000 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 10 a - 25\) , \( 33 a + 24\bigr] \) ${y}^2={x}^3-a{x}^2+\left(10a-25\right){x}+33a+24$
784.1-b1 784.1-b \(\Q(\sqrt{-10}) \) \( 2^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $2.398182112$ 0.758371771 \( 8000 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -4 a + 2\) , \( 2 a + 24\bigr] \) ${y}^2={x}^3+\left(a-1\right){x}^2+\left(-4a+2\right){x}+2a+24$
784.1-b2 784.1-b \(\Q(\sqrt{-10}) \) \( 2^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $2.398182112$ 0.758371771 \( 8000 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -14 a + 17\) , \( 15 a - 69\bigr] \) ${y}^2={x}^3+\left(a-1\right){x}^2+\left(-14a+17\right){x}+15a-69$
784.3-b1 784.3-b \(\Q(\sqrt{-10}) \) \( 2^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $2.398182112$ 0.758371771 \( 8000 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 4 a + 2\) , \( -2 a + 24\bigr] \) ${y}^2={x}^3+\left(-a-1\right){x}^2+\left(4a+2\right){x}-2a+24$
784.3-b2 784.3-b \(\Q(\sqrt{-10}) \) \( 2^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $2.398182112$ 0.758371771 \( 8000 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 14 a + 17\) , \( -15 a - 69\bigr] \) ${y}^2={x}^3+\left(-a-1\right){x}^2+\left(14a+17\right){x}-15a-69$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.