Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
32.1-a1 32.1-a \(\Q(\sqrt{-10}) \) \( 2^{5} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1$ $6.875185818$ 1.087062326 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^3-{x}$
32.1-a2 32.1-a \(\Q(\sqrt{-10}) \) \( 2^{5} \) 0 $\Z/4\Z$ $-4$ $N(\mathrm{U}(1))$ $1$ $6.875185818$ 1.087062326 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 4\) , \( 0\bigr] \) ${y}^2={x}^3+4{x}$
32.1-b1 32.1-b \(\Q(\sqrt{-10}) \) \( 2^{5} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1.899482172$ $6.875185818$ 2.064855508 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -4\) , \( 0\bigr] \) ${y}^2={x}^3-4{x}$
32.1-b2 32.1-b \(\Q(\sqrt{-10}) \) \( 2^{5} \) $1$ $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $0.949741086$ $6.875185818$ 2.064855508 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^3+{x}$
800.1-e1 800.1-e \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) $2$ $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1.583123442$ $3.074676569$ 6.157071676 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 20\) , \( 0\bigr] \) ${y}^2={x}^3+20{x}$
800.1-e2 800.1-e \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) $2$ $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1.583123442$ $3.074676569$ 6.157071676 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -5\) , \( 0\bigr] \) ${y}^2={x}^3-5{x}$
800.1-f1 800.1-f \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $2.244048612$ $3.074676569$ 4.363768417 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 5\) , \( 0\bigr] \) ${y}^2={x}^3+5{x}$
800.1-f2 800.1-f \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1.122024306$ $3.074676569$ 4.363768417 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -20\) , \( 0\bigr] \) ${y}^2={x}^3-20{x}$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.