Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
32.1-a1
32.1-a
$4$
$4$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
32.1
\( 2^{5} \)
\( 2^{12} \)
$1.34418$
$(2,a)$
0
$\Z/2\Z\oplus\Z/2\Z$
$\textsf{potential}$
$-4$
$N(\mathrm{U}(1))$
✓
✓
✓
$2$
2Cs
$4$
\( 2 \)
$1$
$6.875185818$
1.087062326
\( 1728 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( -1\) , \( 0\bigr] \)
${y}^2={x}^3-{x}$
32.1-a2
32.1-a
$4$
$4$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
32.1
\( 2^{5} \)
\( 2^{24} \)
$1.34418$
$(2,a)$
0
$\Z/4\Z$
$\textsf{potential}$
$-4$
$N(\mathrm{U}(1))$
✓
✓
✓
$2$
2Cs
$4$
\( 2 \)
$1$
$6.875185818$
1.087062326
\( 1728 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 4\) , \( 0\bigr] \)
${y}^2={x}^3+4{x}$
32.1-b1
32.1-b
$4$
$4$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
32.1
\( 2^{5} \)
\( 2^{24} \)
$1.34418$
$(2,a)$
$1$
$\Z/2\Z\oplus\Z/2\Z$
$\textsf{potential}$
$-4$
$N(\mathrm{U}(1))$
✓
✓
✓
$1$
\( 2^{2} \)
$1.899482172$
$6.875185818$
2.064855508
\( 1728 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( -4\) , \( 0\bigr] \)
${y}^2={x}^3-4{x}$
32.1-b2
32.1-b
$4$
$4$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
32.1
\( 2^{5} \)
\( 2^{12} \)
$1.34418$
$(2,a)$
$1$
$\Z/2\Z$
$\textsf{potential}$
$-4$
$N(\mathrm{U}(1))$
✓
✓
✓
$1$
\( 2 \)
$0.949741086$
$6.875185818$
2.064855508
\( 1728 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 1\) , \( 0\bigr] \)
${y}^2={x}^3+{x}$
800.1-e1
800.1-e
$2$
$2$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
800.1
\( 2^{5} \cdot 5^{2} \)
\( 2^{24} \cdot 5^{6} \)
$3.00567$
$(2,a), (5,a)$
$2$
$\Z/2\Z$
$\textsf{potential}$
$-4$
$N(\mathrm{U}(1))$
✓
✓
✓
$1$
\( 2^{2} \)
$1.583123442$
$3.074676569$
6.157071676
\( 1728 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 20\) , \( 0\bigr] \)
${y}^2={x}^3+20{x}$
800.1-e2
800.1-e
$2$
$2$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
800.1
\( 2^{5} \cdot 5^{2} \)
\( 2^{12} \cdot 5^{6} \)
$3.00567$
$(2,a), (5,a)$
$2$
$\Z/2\Z$
$\textsf{potential}$
$-4$
$N(\mathrm{U}(1))$
✓
✓
✓
$1$
\( 2^{2} \)
$1.583123442$
$3.074676569$
6.157071676
\( 1728 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( -5\) , \( 0\bigr] \)
${y}^2={x}^3-5{x}$
800.1-f1
800.1-f
$2$
$2$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
800.1
\( 2^{5} \cdot 5^{2} \)
\( 2^{12} \cdot 5^{6} \)
$3.00567$
$(2,a), (5,a)$
$1$
$\Z/2\Z$
$\textsf{potential}$
$-4$
$N(\mathrm{U}(1))$
✓
✓
✓
$1$
\( 2^{2} \)
$2.244048612$
$3.074676569$
4.363768417
\( 1728 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 5\) , \( 0\bigr] \)
${y}^2={x}^3+5{x}$
800.1-f2
800.1-f
$2$
$2$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
800.1
\( 2^{5} \cdot 5^{2} \)
\( 2^{24} \cdot 5^{6} \)
$3.00567$
$(2,a), (5,a)$
$1$
$\Z/2\Z$
$\textsf{potential}$
$-4$
$N(\mathrm{U}(1))$
✓
✓
✓
$1$
\( 2^{3} \)
$1.122024306$
$3.074676569$
4.363768417
\( 1728 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( -20\) , \( 0\bigr] \)
${y}^2={x}^3-20{x}$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.