Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
44.1-a2
44.1-a
$2$
$3$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
44.1
\( 2^{2} \cdot 11 \)
\( 2^{8} \cdot 11^{3} \)
$1.45557$
$(2,a), (a+1)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$3$
3B.1.1
$1$
\( 1 \)
$1$
$2.382295793$
0.753348076
\( -\frac{3109029596}{1331} a + \frac{9318326932}{1331} \)
\( \bigl[a\) , \( a + 1\) , \( 0\) , \( 9 a + 18\) , \( 4 a - 131\bigr] \)
${y}^2+a{x}{y}={x}^3+\left(a+1\right){x}^2+\left(9a+18\right){x}+4a-131$
44.1-b2
44.1-b
$2$
$3$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
44.1
\( 2^{2} \cdot 11 \)
\( 2^{20} \cdot 11^{3} \)
$1.45557$
$(2,a), (a+1)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$3$
3B
$1$
\( 3 \)
$1$
$2.382295793$
2.260044229
\( -\frac{3109029596}{1331} a + \frac{9318326932}{1331} \)
\( \bigl[0\) , \( a\) , \( 0\) , \( 40 a + 79\) , \( 9 a + 578\bigr] \)
${y}^2={x}^3+a{x}^2+\left(40a+79\right){x}+9a+578$
176.1-a2
176.1-a
$2$
$3$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
176.1
\( 2^{4} \cdot 11 \)
\( 2^{8} \cdot 11^{3} \)
$2.05848$
$(2,a), (a+1)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$3$
3B
$1$
\( 3 \)
$1$
$2.382295793$
2.260044229
\( -\frac{3109029596}{1331} a + \frac{9318326932}{1331} \)
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( 11 a + 23\) , \( -14 a + 116\bigr] \)
${y}^2+a{x}{y}+a{y}={x}^3+\left(-a+1\right){x}^2+\left(11a+23\right){x}-14a+116$
176.1-b2
176.1-b
$2$
$3$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
176.1
\( 2^{4} \cdot 11 \)
\( 2^{20} \cdot 11^{3} \)
$2.05848$
$(2,a), (a+1)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$3$
3B
$1$
\( 3 \)
$1$
$2.382295793$
2.260044229
\( -\frac{3109029596}{1331} a + \frac{9318326932}{1331} \)
\( \bigl[0\) , \( -a\) , \( 0\) , \( 40 a + 79\) , \( -9 a - 578\bigr] \)
${y}^2={x}^3-a{x}^2+\left(40a+79\right){x}-9a-578$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.