Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
3249.1-b2 |
3249.1-b |
$2$ |
$5$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
3249.1 |
\( 3^{2} \cdot 19^{2} \) |
\( 3^{20} \cdot 19^{2} \) |
$1.34929$ |
$(3), (19)$ |
$1$ |
$\Z/5\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$5$ |
5B.1.1 |
$1$ |
\( 2 \cdot 5 \) |
$1.131424581$ |
$1.358829150$ |
1.229930161 |
\( \frac{841232384}{1121931} \) |
\( \bigl[0\) , \( -1\) , \( i\) , \( 20\) , \( 32\bigr] \) |
${y}^2+i{y}={x}^{3}-{x}^{2}+20{x}+32$ |
29241.1-c2 |
29241.1-c |
$2$ |
$5$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
29241.1 |
\( 3^{4} \cdot 19^{2} \) |
\( 3^{32} \cdot 19^{2} \) |
$2.33704$ |
$(3), (19)$ |
$0$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$5$ |
5B.4.1 |
$1$ |
\( 2^{2} \) |
$1$ |
$0.452943050$ |
1.811772200 |
\( \frac{841232384}{1121931} \) |
\( \bigl[0\) , \( 0\) , \( i\) , \( 177\) , \( -1035\bigr] \) |
${y}^2+i{y}={x}^{3}+177{x}-1035$ |
Download to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.