Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
882.1-a5 |
882.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
882.1 |
\( 2 \cdot 3^{2} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{8} \cdot 7^{4} \) |
$0.97395$ |
$(a+1), (3), (7)$ |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$1.370183666$ |
1.370183666 |
\( \frac{65597103937}{63504} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -84\) , \( 261\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-84{x}+261$ |
7938.1-a5 |
7938.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
7938.1 |
\( 2 \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{20} \cdot 7^{4} \) |
$1.68693$ |
$(a+1), (3), (7)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$4$ |
\( 2^{4} \) |
$1$ |
$0.456727888$ |
1.826911554 |
\( \frac{65597103937}{63504} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -756\) , \( -7808\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-756{x}-7808$ |
43218.1-g5 |
43218.1-g |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
43218.1 |
\( 2 \cdot 3^{2} \cdot 7^{4} \) |
\( 2^{8} \cdot 3^{8} \cdot 7^{16} \) |
$2.57682$ |
$(a+1), (3), (7)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \) |
$2.310811814$ |
$0.195740523$ |
7.237112237 |
\( \frac{65597103937}{63504} \) |
\( \bigl[i\) , \( 0\) , \( 0\) , \( -4117\) , \( 101935\bigr] \) |
${y}^2+i{x}{y}={x}^{3}-4117{x}+101935$ |
Download to
Pari/GP
SageMath
Magma
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.