Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1300.4-a3 1300.4-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.397400652$ 1.192201957 \( \frac{40605232846917732}{2912260640310125} a + \frac{15507117639303424}{2912260640310125} \) \( \bigl[i + 1\) , \( 0\) , \( 0\) , \( 11 i - 63\) , \( 1356 i + 1607\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(11i-63\right){x}+1356i+1607$
26000.4-j3 26000.4-j \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{3} \cdot 13 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.250851713$ $0.177722974$ 4.001491570 \( \frac{40605232846917732}{2912260640310125} a + \frac{15507117639303424}{2912260640310125} \) \( \bigl[i + 1\) , \( -i - 1\) , \( 0\) , \( 219 i + 233\) , \( 11702 i + 20389\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(219i+233\right){x}+11702i+20389$
26000.6-b3 26000.6-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $10.03986057$ $0.177722974$ 3.568627771 \( \frac{40605232846917732}{2912260640310125} a + \frac{15507117639303424}{2912260640310125} \) \( \bigl[i + 1\) , \( -1\) , \( 0\) , \( -285 i + 145\) , \( -18130 i - 14965\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-285i+145\right){x}-18130i-14965$
32500.6-c3 32500.6-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{4} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.079480130$ 0.953761565 \( \frac{40605232846917732}{2912260640310125} a + \frac{15507117639303424}{2912260640310125} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( 274 i - 1573\) , \( -171074 i - 201150\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(274i-1573\right){x}-171074i-201150$
67600.6-i3 67600.6-i \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.999374845$ $0.110219109$ 4.628789192 \( \frac{40605232846917732}{2912260640310125} a + \frac{15507117639303424}{2912260640310125} \) \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( -701 i - 447\) , \( 61718 i - 76839\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-701i-447\right){x}+61718i-76839$
83200.4-g3 83200.4-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{2} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.198700326$ 2.384403914 \( \frac{40605232846917732}{2912260640310125} a + \frac{15507117639303424}{2912260640310125} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 44 i - 252\) , \( 10848 i + 12856\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(44i-252\right){x}+10848i+12856$
84500.6-b3 84500.6-b \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{3} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.049291484$ 2.365991253 \( \frac{40605232846917732}{2912260640310125} a + \frac{15507117639303424}{2912260640310125} \) \( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 3886 i - 1460\) , \( 835002 i - 727142\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(3886i-1460\right){x}+835002i-727142$
84500.9-b3 84500.9-b \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{3} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.049291484$ 1.774493439 \( \frac{40605232846917732}{2912260640310125} a + \frac{15507117639303424}{2912260640310125} \) \( \bigl[i + 1\) , \( 1\) , \( i + 1\) , \( 313 i + 4140\) , \( 524905 i - 972807\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+{x}^{2}+\left(313i+4140\right){x}+524905i-972807$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.