Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
3249.1-c3 |
3249.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
3249.1 |
\( 3^{2} \cdot 19^{2} \) |
\( 3^{4} \cdot 19^{4} \) |
$1.34929$ |
$(3), (19)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{2} \) |
$1.300946956$ |
$3.264688998$ |
2.123593608 |
\( \frac{30664297}{3249} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -7\) , \( 5\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-7{x}+5$ |
29241.1-a3 |
29241.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
29241.1 |
\( 3^{4} \cdot 19^{2} \) |
\( 3^{16} \cdot 19^{4} \) |
$2.33704$ |
$(3), (19)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$4$ |
\( 2^{3} \) |
$1$ |
$1.088229666$ |
2.176459332 |
\( \frac{30664297}{3249} \) |
\( \bigl[i\) , \( 1\) , \( i\) , \( -58\) , \( 142\bigr] \) |
${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-58{x}+142$ |
Download to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.