Learn more

Refine search


Results (19 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
72.1-a5 72.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.635347017$ 0.454418377 \( \frac{28756228}{3} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i + 16\) , \( -28 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+16\right){x}-28i$
648.1-a5 648.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.211782339$ 1.211782339 \( \frac{28756228}{3} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 144\) , \( -598 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+144{x}-598i$
2304.1-c5 2304.1-c \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.817673508$ 1.817673508 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 64\) , \( -220 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+64{x}-220i$
3600.1-c5 3600.1-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.625776610$ 1.625776610 \( \frac{28756228}{3} \) \( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( -65 i - 48\) , \( 302 i + 55\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-65i-48\right){x}+302i+55$
3600.3-c5 3600.3-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.625776610$ 1.625776610 \( \frac{28756228}{3} \) \( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( 63 i - 48\) , \( -303 i + 55\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(63i-48\right){x}-303i+55$
9216.1-c5 9216.1-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.141888207$ $1.285289264$ 2.752945917 \( \frac{28756228}{3} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -128 i\) , \( -440 i + 440\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}-128i{x}-440i+440$
9216.1-j5 9216.1-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.141888207$ $1.285289264$ 2.752945917 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 128 i\) , \( 440 i + 440\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+128i{x}+440i+440$
20736.1-b5 20736.1-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.539636932$ $0.605891169$ 2.615690016 \( \frac{28756228}{3} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 579\) , \( 5362 i\bigr] \) ${y}^2={x}^{3}+579{x}+5362i$
20808.1-a5 20808.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.881701161$ 1.763402322 \( \frac{28756228}{3} \) \( \bigl[i + 1\) , \( -1\) , \( 0\) , \( -129 i - 241\) , \( -1164 i - 1189\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-129i-241\right){x}-1164i-1189$
20808.3-a5 20808.3-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.881701161$ 1.763402322 \( \frac{28756228}{3} \) \( \bigl[i + 1\) , \( 1\) , \( 0\) , \( 129 i - 241\) , \( -1164 i + 1189\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+{x}^{2}+\left(129i-241\right){x}-1164i+1189$
24336.1-a5 24336.1-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.899714244$ $1.008263852$ 3.628597400 \( \frac{28756228}{3} \) \( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -193 i + 80\) , \( -248 i + 1265\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-193i+80\right){x}-248i+1265$
24336.3-a5 24336.3-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.899714244$ $1.008263852$ 3.628597400 \( \frac{28756228}{3} \) \( \bigl[i + 1\) , \( i + 1\) , \( 0\) , \( 194 i + 80\) , \( 328 i + 1072\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(194i+80\right){x}+328i+1072$
32400.1-b5 32400.1-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.541925536$ 1.083851073 \( \frac{28756228}{3} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -580 i - 435\) , \( 7155 i + 1630\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-580i-435\right){x}+7155i+1630$
32400.3-b5 32400.3-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.541925536$ 1.083851073 \( \frac{28756228}{3} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 579 i - 435\) , \( -7590 i + 1051\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(579i-435\right){x}-7590i+1051$
45000.3-k5 45000.3-k \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.748483442$ $0.727069403$ 4.353595283 \( \frac{28756228}{3} \) \( \bigl[i + 1\) , \( -i\) , \( 0\) , \( 402\) , \( 3036 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+402{x}+3036i$
57600.1-d5 57600.1-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.062418350$ $0.812888305$ 3.454509811 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( -258 i - 193\) , \( 2163 i + 247\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(-258i-193\right){x}+2163i+247$
57600.3-d5 57600.3-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.062418350$ $0.812888305$ 3.454509811 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 258 i - 193\) , \( 2163 i - 247\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(258i-193\right){x}+2163i-247$
82944.1-g5 82944.1-g \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.550999615$ $0.428429754$ 4.756426807 \( \frac{28756228}{3} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 1158 i\) , \( -10724 i - 10724\bigr] \) ${y}^2={x}^{3}+1158i{x}-10724i-10724$
82944.1-n5 82944.1-n \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.550999615$ $0.428429754$ 4.756426807 \( \frac{28756228}{3} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -1158 i\) , \( 10724 i - 10724\bigr] \) ${y}^2={x}^{3}-1158i{x}+10724i-10724$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.