Learn more

Refine search


Results (5 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
3400.4-b5 3400.4-b \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 17 \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $1.789627193$ 1.789627193 \( \frac{2845155328}{6640625} a + \frac{8254109696}{6640625} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 14 i - 2\) , \( -8 i + 1\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(14i-2\right){x}-8i+1$
34000.4-a5 34000.4-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{3} \cdot 17 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.800345611$ 0.800345611 \( \frac{2845155328}{6640625} a + \frac{8254109696}{6640625} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -32 i + 59\) , \( 123 i - 55\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-32i+59\right){x}+123i-55$
34000.6-b5 34000.6-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{3} \cdot 17 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.146032671$ $0.800345611$ 3.668888877 \( \frac{2845155328}{6640625} a + \frac{8254109696}{6640625} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -48 i - 47\) , \( -134 i + 76\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-48i-47\right){x}-134i+76$
57800.6-b5 57800.6-b \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.575901732$ $0.434048349$ 3.999507146 \( \frac{2845155328}{6640625} a + \frac{8254109696}{6640625} \) \( \bigl[0\) , \( i\) , \( 0\) , \( -216 i - 77\) , \( -261 i + 979\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(-216i-77\right){x}-261i+979$
85000.6-d5 85000.6-d \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{4} \cdot 17 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.357925438$ 1.431701754 \( \frac{2845155328}{6640625} a + \frac{8254109696}{6640625} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 334 i - 50\) , \( 1576 i - 901\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(334i-50\right){x}+1576i-901$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.