Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
200.2-a5 200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.749222245$ 0.749222245 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -61 i - 34\) , \( -48 i + 240\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-61i-34\right){x}-48i+240$
2000.2-a5 2000.2-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.335062374$ 1.340249496 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 313 i - 141\) , \( 688 i - 2405\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(313i-141\right){x}+688i-2405$
2000.3-a5 2000.3-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.335062374$ 1.340249496 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 47 i + 339\) , \( 88 i - 2395\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(47i+339\right){x}+88i-2395$
5000.3-a5 5000.3-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.733574011$ $0.149844449$ 2.237821363 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -1501 i - 832\) , \( -4260 i + 27000\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-1501i-832\right){x}-4260i+27000$
6400.2-a5 6400.2-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.888821352$ $0.374611122$ 2.164369220 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -240 i - 133\) , \( 246 i - 1680\bigr] \) ${y}^2={x}^{3}+\left(-240i-133\right){x}+246i-1680$
16200.2-a5 16200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.735045170$ $0.249740748$ 2.732208912 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -540 i - 300\) , \( -980 i + 5940\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-540i-300\right){x}-980i+5940$
25600.2-j5 25600.2-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.264890065$ 2.119120521 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -266 i + 480\) , \( -3852 i + 2868\bigr] \) ${y}^2={x}^{3}+\left(-266i+480\right){x}-3852i+2868$
25600.2-p5 25600.2-p \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.264890065$ 2.119120521 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 266 i - 480\) , \( -2868 i - 3852\bigr] \) ${y}^2={x}^{3}+\left(266i-480\right){x}-2868i-3852$
32000.2-l5 32000.2-l \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.167531187$ 2.680498993 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 1252 i - 561\) , \( -6066 i + 17988\bigr] \) ${y}^2={x}^{3}+\left(1252i-561\right){x}-6066i+17988$
32000.3-l5 32000.3-l \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.167531187$ 2.680498993 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 188 i + 1359\) , \( -654 i - 18972\bigr] \) ${y}^2={x}^{3}+\left(188i+1359\right){x}-654i-18972$
57800.4-e5 57800.4-e \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.181713085$ 2.907409369 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 1166 i + 18\) , \( -12356 i + 7688\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(1166i+18\right){x}-12356i+7688$
57800.6-d5 57800.6-d \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.181713085$ 2.907409369 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 634 i + 978\) , \( 9964 i + 11152\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(634i+978\right){x}+9964i+11152$
67600.4-d5 67600.4-d \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.258491824$ $0.207796863$ 3.754460134 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 99 i - 887\) , \( 8940 i + 3255\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(99i-887\right){x}+8940i+3255$
67600.6-f5 67600.6-f \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.564622956$ $0.207796863$ 3.754460134 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -700 i + 553\) , \( 10213 i - 126\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-700i+553\right){x}+10213i-126$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.