Learn more

Refine search


Results (19 matches)

  Download displayed columns to          
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
72.1-a1 72.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $1.817673508$ 0.454418377 \( \frac{207646}{6561} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i - 4\) , \( 22 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i-4\right){x}+22i$
648.1-a1 648.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.605891169$ 1.211782339 \( \frac{207646}{6561} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -36\) , \( 572 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-36{x}+572i$
2304.1-c1 2304.1-c \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.908836754$ 1.817673508 \( \frac{207646}{6561} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -16\) , \( 180 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}-16{x}+180i$
3600.1-c1 3600.1-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812888305$ 1.625776610 \( \frac{207646}{6561} \) \( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( 15 i + 12\) , \( -248 i - 45\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(15i+12\right){x}-248i-45$
3600.3-c1 3600.3-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812888305$ 1.625776610 \( \frac{207646}{6561} \) \( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( -17 i + 12\) , \( 247 i - 45\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(-17i+12\right){x}+247i-45$
9216.1-c1 9216.1-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.070944103$ $0.642644632$ 2.752945917 \( \frac{207646}{6561} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 32 i\) , \( 360 i - 360\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+32i{x}+360i-360$
9216.1-j1 9216.1-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.070944103$ $0.642644632$ 2.752945917 \( \frac{207646}{6561} \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( -32 i\) , \( -360 i - 360\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}-32i{x}-360i-360$
20736.1-b1 20736.1-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.079273864$ $0.302945584$ 2.615690016 \( \frac{207646}{6561} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -141\) , \( -4718 i\bigr] \) ${y}^2={x}^{3}-141{x}-4718i$
20808.1-a1 20808.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.440850580$ 1.763402322 \( \frac{207646}{6561} \) \( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 31 i + 59\) , \( -1026 i - 1111\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(31i+59\right){x}-1026i-1111$
20808.3-a1 20808.3-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.440850580$ 1.763402322 \( \frac{207646}{6561} \) \( \bigl[i + 1\) , \( 1\) , \( 0\) , \( -31 i + 59\) , \( 1026 i - 1111\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-31i+59\right){x}+1026i-1111$
24336.1-a1 24336.1-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.449857122$ $0.504131926$ 3.628597400 \( \frac{207646}{6561} \) \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( 46 i - 20\) , \( -222 i + 988\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(46i-20\right){x}-222i+988$
24336.3-a1 24336.3-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.449857122$ $0.504131926$ 3.628597400 \( \frac{207646}{6561} \) \( \bigl[i + 1\) , \( i + 1\) , \( 0\) , \( -46 i - 20\) , \( -222 i - 988\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-46i-20\right){x}-222i-988$
32400.1-b1 32400.1-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.270962768$ 1.083851073 \( \frac{207646}{6561} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 141 i + 105\) , \( 6540 i + 1109\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(141i+105\right){x}+6540i+1109$
32400.3-b1 32400.3-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.270962768$ 1.083851073 \( \frac{207646}{6561} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -141 i + 105\) , \( 6540 i - 1109\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-141i+105\right){x}+6540i-1109$
45000.3-k1 45000.3-k \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.374241721$ $0.363534701$ 4.353595283 \( \frac{207646}{6561} \) \( \bigl[i + 1\) , \( -i\) , \( 0\) , \( -98\) , \( -2714 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}-98{x}-2714i$
57600.1-d1 57600.1-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.124836701$ $0.406444152$ 3.454509811 \( \frac{207646}{6561} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 62 i + 47\) , \( 1917 i + 313\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(62i+47\right){x}+1917i+313$
57600.3-d1 57600.3-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.124836701$ $0.406444152$ 3.454509811 \( \frac{207646}{6561} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -62 i + 47\) , \( -1917 i + 313\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-62i+47\right){x}-1917i+313$
82944.1-g1 82944.1-g \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.775499807$ $0.214214877$ 4.756426807 \( \frac{207646}{6561} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -282 i\) , \( 9436 i + 9436\bigr] \) ${y}^2={x}^{3}-282i{x}+9436i+9436$
82944.1-n1 82944.1-n \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.775499807$ $0.214214877$ 4.756426807 \( \frac{207646}{6561} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 282 i\) , \( -9436 i + 9436\bigr] \) ${y}^2={x}^{3}+282i{x}-9436i+9436$
  Download displayed columns to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.