Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
650.4-a4 |
650.4-a |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
650.4 |
\( 2 \cdot 5^{2} \cdot 13 \) |
\( 2^{3} \cdot 5^{14} \cdot 13^{4} \) |
$0.90240$ |
$(a+1), (-a-2), (2a+1), (2a+3)$ |
0 |
$\Z/12\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{5} \cdot 3^{2} \) |
$1$ |
$0.723212322$ |
1.446424644 |
\( \frac{20122730162024161}{27891601562500} a + \frac{104798752060117927}{27891601562500} \) |
\( \bigl[1\) , \( 0\) , \( i + 1\) , \( -109 i + 9\) , \( 170 i - 274\bigr] \) |
${y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-109i+9\right){x}+170i-274$ |
16250.6-a4 |
16250.6-a |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
16250.6 |
\( 2 \cdot 5^{4} \cdot 13 \) |
\( 2^{3} \cdot 5^{26} \cdot 13^{4} \) |
$2.01782$ |
$(a+1), (-a-2), (2a+1), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \) |
$1.965455703$ |
$0.144642464$ |
2.274306853 |
\( \frac{20122730162024161}{27891601562500} a + \frac{104798752060117927}{27891601562500} \) |
\( \bigl[i\) , \( -1\) , \( i + 1\) , \( -2713 i + 238\) , \( -21313 i + 34250\bigr] \) |
${y}^2+i{x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(-2713i+238\right){x}-21313i+34250$ |
26000.4-f4 |
26000.4-f |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
26000.4 |
\( 2^{4} \cdot 5^{3} \cdot 13 \) |
\( 2^{15} \cdot 5^{20} \cdot 13^{4} \) |
$2.26940$ |
$(a+1), (-a-2), (2a+1), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.161715191$ |
1.293721531 |
\( \frac{20122730162024161}{27891601562500} a + \frac{104798752060117927}{27891601562500} \) |
\( \bigl[i + 1\) , \( 1\) , \( 0\) , \( -1150 i + 1850\) , \( -21384 i - 19388\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-1150i+1850\right){x}-21384i-19388$ |
26000.6-f4 |
26000.6-f |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
26000.6 |
\( 2^{4} \cdot 5^{3} \cdot 13 \) |
\( 2^{15} \cdot 5^{20} \cdot 13^{4} \) |
$2.26940$ |
$(a+1), (-a-2), (2a+1), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{6} \) |
$1$ |
$0.161715191$ |
2.587443063 |
\( \frac{20122730162024161}{27891601562500} a + \frac{104798752060117927}{27891601562500} \) |
\( \bigl[i + 1\) , \( -1\) , \( 0\) , \( -1454 i - 1622\) , \( -26840 i - 10620\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-1454i-1622\right){x}-26840i-10620$ |
42250.6-e4 |
42250.6-e |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
42250.6 |
\( 2 \cdot 5^{3} \cdot 13^{2} \) |
\( 2^{3} \cdot 5^{20} \cdot 13^{10} \) |
$2.56227$ |
$(a+1), (-a-2), (2a+1), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{5} \cdot 3 \) |
$1$ |
$0.089703448$ |
2.152882762 |
\( \frac{20122730162024161}{27891601562500} a + \frac{104798752060117927}{27891601562500} \) |
\( \bigl[i\) , \( -i - 1\) , \( 1\) , \( -4111 i - 5763\) , \( 148881 i + 93187\bigr] \) |
${y}^2+i{x}{y}+{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-4111i-5763\right){x}+148881i+93187$ |
42250.9-i4 |
42250.9-i |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
42250.9 |
\( 2 \cdot 5^{3} \cdot 13^{2} \) |
\( 2^{3} \cdot 5^{20} \cdot 13^{10} \) |
$2.56227$ |
$(a+1), (-a-2), (2a+1), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{5} \cdot 3 \) |
$1.482688366$ |
$0.089703448$ |
6.384108451 |
\( \frac{20122730162024161}{27891601562500} a + \frac{104798752060117927}{27891601562500} \) |
\( \bigl[i\) , \( -i\) , \( i\) , \( 6684 i - 2333\) , \( 168611 i + 37554\bigr] \) |
${y}^2+i{x}{y}+i{y}={x}^{3}-i{x}^{2}+\left(6684i-2333\right){x}+168611i+37554$ |
52650.4-a4 |
52650.4-a |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
52650.4 |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 13 \) |
\( 2^{3} \cdot 3^{12} \cdot 5^{14} \cdot 13^{4} \) |
$2.70719$ |
$(a+1), (-a-2), (2a+1), (2a+3), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{5} \) |
$0.836000358$ |
$0.241070774$ |
3.224564057 |
\( \frac{20122730162024161}{27891601562500} a + \frac{104798752060117927}{27891601562500} \) |
\( \bigl[1\) , \( -1\) , \( i + 1\) , \( -977 i + 85\) , \( -4604 i + 7398\bigr] \) |
${y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(-977i+85\right){x}-4604i+7398$ |
67600.6-a4 |
67600.6-a |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
67600.6 |
\( 2^{4} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{15} \cdot 5^{14} \cdot 13^{10} \) |
$2.88174$ |
$(a+1), (-a-2), (2a+1), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{6} \) |
$1.059422156$ |
$0.100291504$ |
3.400033334 |
\( \frac{20122730162024161}{27891601562500} a + \frac{104798752060117927}{27891601562500} \) |
\( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( 1714 i - 5398\) , \( 43016 i - 113108\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(1714i-5398\right){x}+43016i-113108$ |
83200.4-n4 |
83200.4-n |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
83200.4 |
\( 2^{8} \cdot 5^{2} \cdot 13 \) |
\( 2^{27} \cdot 5^{14} \cdot 13^{4} \) |
$3.03528$ |
$(a+1), (-a-2), (2a+1), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.180803080$ |
1.446424644 |
\( \frac{20122730162024161}{27891601562500} a + \frac{104798752060117927}{27891601562500} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 1736 i - 152\) , \( -17536 i - 10912\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(1736i-152\right){x}-17536i-10912$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.