Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
58482.1-a1 |
58482.1-a |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
58482.1 |
\( 2 \cdot 3^{4} \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 19^{2} \) |
$2.77923$ |
$(a+1), (3), (19)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.237879944$ |
$3.855564791$ |
3.668646161 |
\( \frac{132651}{76} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -3\) , \( 1\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-3{x}+1$ |
58482.1-g1 |
58482.1-g |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
58482.1 |
\( 2 \cdot 3^{4} \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{18} \cdot 19^{2} \) |
$2.77923$ |
$(a+1), (3), (19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.551718204$ |
$1.285188263$ |
7.977000101 |
\( \frac{132651}{76} \) |
\( \bigl[i\) , \( 1\) , \( i\) , \( -28\) , \( -1\bigr] \) |
${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-28{x}-1$ |
Download to
Pari/GP
SageMath
Magma
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.