Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
338.2-a3 338.2-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 13^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.166288191$ $8.072407178$ 0.596598218 \( \frac{12167}{26} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}$
27378.2-e3 27378.2-e \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.690802392$ 5.381604785 \( \frac{12167}{26} \) \( \bigl[i\) , \( 1\) , \( i\) , \( 5\) , \( 7\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}+5{x}+7$
35152.2-g3 35152.2-g \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 13^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.194510618$ $1.119441461$ 3.483892024 \( \frac{12167}{26} \) \( \bigl[i + 1\) , \( i + 1\) , \( 0\) , \( 24 i - 10\) , \( 18 i - 92\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(24i-10\right){x}+18i-92$
35152.3-b3 35152.3-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 13^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.194510618$ $1.119441461$ 3.483892024 \( \frac{12167}{26} \) \( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -23 i - 10\) , \( -28 i - 69\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-23i-10\right){x}-28i-69$
43264.2-l3 43264.2-l \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.330883202$ $2.018101794$ 5.342047875 \( \frac{12167}{26} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -8\) , \( 16 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}-8{x}+16i$
57122.3-h3 57122.3-h \(\Q(\sqrt{-1}) \) \( 2 \cdot 13^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.620954398$ 4.967635186 \( \frac{12167}{26} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( 81\) , \( -467\bigr] \) ${y}^2+i{x}{y}={x}^{3}+81{x}-467$
67600.2-i3 67600.2-i \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.805045119$ 3.610090238 \( \frac{12167}{26} \) \( \bigl[i + 1\) , \( 1\) , \( 0\) , \( 8 i + 6\) , \( 22 i + 4\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+{x}^{2}+\left(8i+6\right){x}+22i+4$
67600.8-i3 67600.8-i \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.805045119$ 3.610090238 \( \frac{12167}{26} \) \( \bigl[i + 1\) , \( -1\) , \( 0\) , \( -8 i + 6\) , \( 22 i - 4\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-8i+6\right){x}+22i-4$
97682.4-b3 97682.4-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 13^{2} \cdot 17^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.957846320$ 3.915692641 \( \frac{12167}{26} \) \( \bigl[1\) , \( -i\) , \( 1\) , \( -4 i - 8\) , \( 13 i - 12\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-i{x}^{2}+\left(-4i-8\right){x}+13i-12$
97682.6-b3 97682.6-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 13^{2} \cdot 17^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.957846320$ 3.915692641 \( \frac{12167}{26} \) \( \bigl[i\) , \( -i\) , \( i\) , \( 4 i - 7\) , \( 13 i + 12\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-i{x}^{2}+\left(4i-7\right){x}+13i+12$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.