Learn more

Refine search


Results (9 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
225.2-a2 225.2-a \(\Q(\sqrt{-1}) \) \( 3^{2} \cdot 5^{2} \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $0.558925428$ 0.558925428 \( \frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) \( \bigl[i\) , \( -1\) , \( i\) , \( 105 i + 396\) , \( -2982 i + 1054\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-{x}^{2}+\left(105i+396\right){x}-2982i+1054$
2025.2-c2 2025.2-c \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.300312843$ $0.186308476$ 1.938074434 \( \frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) \( \bigl[i\) , \( 1\) , \( 0\) , \( 945 i + 3555\) , \( 79569 i - 32008\bigr] \) ${y}^2+i{x}{y}={x}^{3}+{x}^{2}+\left(945i+3555\right){x}+79569i-32008$
5625.3-b2 5625.3-b \(\Q(\sqrt{-1}) \) \( 3^{2} \cdot 5^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.111785085$ 1.788561370 \( \frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) \( \bigl[i\) , \( 0\) , \( i\) , \( 2625 i + 9875\) , \( -367500 i + 151477\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+\left(2625i+9875\right){x}-367500i+151477$
18000.2-b2 18000.2-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.063921427$ $0.124979525$ 3.063419561 \( \frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) \( \bigl[i + 1\) , \( 1\) , \( i + 1\) , \( 7579 i + 3060\) , \( 63243 i + 277817\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+{x}^{2}+\left(7579i+3060\right){x}+63243i+277817$
18000.3-a2 18000.3-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.063921427$ $0.124979525$ 3.063419561 \( \frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) \( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( -5061 i + 6420\) , \( 156987 i + 237775\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(-5061i+6420\right){x}+156987i+237775$
50625.3-b2 50625.3-b \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 5^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.400975354$ $0.037261695$ 2.862861179 \( \frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) \( \bigl[i\) , \( 1\) , \( i\) , \( 23625 i + 88871\) , \( 9922500 i - 4089872\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}+\left(23625i+88871\right){x}+9922500i-4089872$
57600.2-g2 57600.2-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.139731357$ 2.235701712 \( \frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) \( \bigl[0\) , \( i\) , \( 0\) , \( -1680 i - 6320\) , \( -80084 i - 187488\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(-1680i-6320\right){x}-80084i-187488$
65025.4-b2 65025.4-b \(\Q(\sqrt{-1}) \) \( 3^{2} \cdot 5^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.135559328$ 2.168949249 \( \frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) \( \bigl[i\) , \( -i - 1\) , \( i\) , \( -4734 i - 5084\) , \( 205122 i + 96065\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-4734i-5084\right){x}+205122i+96065$
65025.6-b2 65025.6-b \(\Q(\sqrt{-1}) \) \( 3^{2} \cdot 5^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.135559328$ 2.168949249 \( \frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) \( \bigl[i\) , \( i - 1\) , \( i\) , \( 1584 i - 6764\) , \( 71826 i - 207763\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(1584i-6764\right){x}+71826i-207763$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.