Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
324.1-a1 |
324.1-a |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
324.1 |
\( 2^{2} \cdot 3^{4} \) |
\( 2^{8} \cdot 3^{6} \) |
$0.75824$ |
$(a+1), (3)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$5.108115717$ |
0.851352619 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -1\bigr] \) |
${y}^2={x}^{3}-1$ |
324.1-a2 |
324.1-a |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
324.1 |
\( 2^{2} \cdot 3^{4} \) |
\( 2^{8} \cdot 3^{18} \) |
$0.75824$ |
$(a+1), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2 \) |
$1$ |
$1.702705239$ |
0.851352619 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 27\bigr] \) |
${y}^2={x}^{3}+27$ |
729.1-a3 |
729.1-a |
$4$ |
$27$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
729.1 |
\( 3^{6} \) |
\( 3^{6} \) |
$0.92865$ |
$(3)$ |
$0$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$3$ |
3Cs.1.1 |
$1$ |
\( 1 \) |
$1$ |
$8.108628264$ |
0.900958696 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 0\bigr] \) |
${y}^2+{y}={x}^{3}$ |
729.1-a4 |
729.1-a |
$4$ |
$27$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
729.1 |
\( 3^{6} \) |
\( 3^{18} \) |
$0.92865$ |
$(3)$ |
$0$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$3$ |
3Cs.1.1 |
$1$ |
\( 3 \) |
$1$ |
$2.702876088$ |
0.900958696 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -7\bigr] \) |
${y}^2+{y}={x}^{3}-7$ |
2916.1-b1 |
2916.1-b |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
2916.1 |
\( 2^{2} \cdot 3^{6} \) |
\( 2^{4} \cdot 3^{6} \) |
$1.31330$ |
$(a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3 \) |
$0.450320685$ |
$6.435822518$ |
1.932122672 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( -i\bigr] \) |
${y}^2+\left(i+1\right){y}={x}^{3}-i$ |
2916.1-b2 |
2916.1-b |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
2916.1 |
\( 2^{2} \cdot 3^{6} \) |
\( 2^{4} \cdot 3^{18} \) |
$1.31330$ |
$(a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 3 \) |
$0.150106895$ |
$2.145274172$ |
1.932122672 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( 13 i\bigr] \) |
${y}^2+\left(i+1\right){y}={x}^{3}+13i$ |
18225.1-c1 |
18225.1-c |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18225.1 |
\( 3^{6} \cdot 5^{2} \) |
\( 3^{6} \cdot 5^{8} \) |
$2.07652$ |
$(-a-2), (3)$ |
$0$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3 \) |
$1$ |
$2.773111858$ |
0.924370619 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i\) , \( 0\) , \( -6 i + 2\bigr] \) |
${y}^2+i{y}={x}^{3}-6i+2$ |
18225.1-c2 |
18225.1-c |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18225.1 |
\( 3^{6} \cdot 5^{2} \) |
\( 3^{18} \cdot 5^{8} \) |
$2.07652$ |
$(-a-2), (3)$ |
$0$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$1$ |
$0.924370619$ |
0.924370619 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i\) , \( 0\) , \( 162 i - 47\bigr] \) |
${y}^2+i{y}={x}^{3}+162i-47$ |
18225.1-d1 |
18225.1-d |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18225.1 |
\( 3^{6} \cdot 5^{2} \) |
\( 3^{6} \cdot 5^{4} \) |
$2.07652$ |
$(-a-2), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3 \) |
$0.823072945$ |
$4.741954575$ |
2.601983013 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -i - 1\bigr] \) |
${y}^2+{y}={x}^{3}-i-1$ |
18225.1-d2 |
18225.1-d |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18225.1 |
\( 3^{6} \cdot 5^{2} \) |
\( 3^{18} \cdot 5^{4} \) |
$2.07652$ |
$(-a-2), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 3 \) |
$0.274357648$ |
$1.580651525$ |
2.601983013 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 27 i + 20\bigr] \) |
${y}^2+{y}={x}^{3}+27i+20$ |
18225.3-c1 |
18225.3-c |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18225.3 |
\( 3^{6} \cdot 5^{2} \) |
\( 3^{6} \cdot 5^{4} \) |
$2.07652$ |
$(2a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3 \) |
$0.823072945$ |
$4.741954575$ |
2.601983013 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( i - 1\bigr] \) |
${y}^2+{y}={x}^{3}+i-1$ |
18225.3-c2 |
18225.3-c |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18225.3 |
\( 3^{6} \cdot 5^{2} \) |
\( 3^{18} \cdot 5^{4} \) |
$2.07652$ |
$(2a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 3 \) |
$0.274357648$ |
$1.580651525$ |
2.601983013 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -27 i + 20\bigr] \) |
${y}^2+{y}={x}^{3}-27i+20$ |
18225.3-d1 |
18225.3-d |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18225.3 |
\( 3^{6} \cdot 5^{2} \) |
\( 3^{6} \cdot 5^{8} \) |
$2.07652$ |
$(2a+1), (3)$ |
$0$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3 \) |
$1$ |
$2.773111858$ |
0.924370619 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i\) , \( 0\) , \( 6 i + 2\bigr] \) |
${y}^2+i{y}={x}^{3}+6i+2$ |
18225.3-d2 |
18225.3-d |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18225.3 |
\( 3^{6} \cdot 5^{2} \) |
\( 3^{18} \cdot 5^{8} \) |
$2.07652$ |
$(2a+1), (3)$ |
$0$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$1$ |
$0.924370619$ |
0.924370619 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i\) , \( 0\) , \( -162 i - 47\bigr] \) |
${y}^2+i{y}={x}^{3}-162i-47$ |
20736.1-d1 |
20736.1-d |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
20736.1 |
\( 2^{8} \cdot 3^{4} \) |
\( 2^{8} \cdot 3^{6} \) |
$2.14462$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$2$ |
2B |
$1$ |
\( 2 \) |
$0.653234677$ |
$5.108115717$ |
3.336798323 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -i\bigr] \) |
${y}^2={x}^{3}-i$ |
20736.1-d2 |
20736.1-d |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
20736.1 |
\( 2^{8} \cdot 3^{4} \) |
\( 2^{8} \cdot 3^{18} \) |
$2.14462$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$2$ |
2B |
$1$ |
\( 2 \) |
$1.959704032$ |
$1.702705239$ |
3.336798323 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 27 i\bigr] \) |
${y}^2={x}^{3}+27i$ |
32400.1-c1 |
32400.1-c |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.417946696$ |
$2.284418796$ |
3.819061154 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 2 i - 11\bigr] \) |
${y}^2={x}^{3}+2i-11$ |
32400.1-c2 |
32400.1-c |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{18} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.253840088$ |
$0.761472932$ |
3.819061154 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -54 i + 297\bigr] \) |
${y}^2={x}^{3}-54i+297$ |
32400.3-c1 |
32400.3-c |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.3 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{18} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.253840088$ |
$0.761472932$ |
3.819061154 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 54 i + 297\bigr] \) |
${y}^2={x}^{3}+54i+297$ |
32400.3-c2 |
32400.3-c |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.3 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.417946696$ |
$2.284418796$ |
3.819061154 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -2 i - 11\bigr] \) |
${y}^2={x}^{3}-2i-11$ |
50625.3-c1 |
50625.3-c |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
50625.3 |
\( 3^{4} \cdot 5^{4} \) |
\( 3^{18} \cdot 5^{4} \) |
$2.68077$ |
$(-a-2), (2a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$5$ |
5Ns.2.1 |
$1$ |
\( 2 \) |
$0.460920105$ |
$1.580651525$ |
2.914216267 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i\) , \( 0\) , \( 34\bigr] \) |
${y}^2+i{y}={x}^{3}+34$ |
50625.3-c2 |
50625.3-c |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
50625.3 |
\( 3^{4} \cdot 5^{4} \) |
\( 3^{6} \cdot 5^{4} \) |
$2.68077$ |
$(-a-2), (2a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$5$ |
5Ns.2.1 |
$1$ |
\( 2 \) |
$0.153640035$ |
$4.741954575$ |
2.914216267 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i\) , \( 0\) , \( -1\bigr] \) |
${y}^2+i{y}={x}^{3}-1$ |
50625.3-f1 |
50625.3-f |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
50625.3 |
\( 3^{4} \cdot 5^{4} \) |
\( 3^{6} \cdot 5^{16} \) |
$2.68077$ |
$(-a-2), (2a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$3, 5$ |
3B.1.1, 5Ns.2.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$1.007478452$ |
$0.948390915$ |
3.821933646 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 156\bigr] \) |
${y}^2+{y}={x}^{3}+156$ |
50625.3-f2 |
50625.3-f |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
50625.3 |
\( 3^{4} \cdot 5^{4} \) |
\( 3^{18} \cdot 5^{16} \) |
$2.68077$ |
$(-a-2), (2a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$3, 5$ |
3B.1.2, 5Ns.2.1 |
$1$ |
\( 2 \) |
$3.022435358$ |
$0.316130305$ |
3.821933646 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -4219\bigr] \) |
${y}^2+{y}={x}^{3}-4219$ |
59049.1-a1 |
59049.1-a |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
59049.1 |
\( 3^{10} \) |
\( 3^{10} \) |
$2.78594$ |
$(3)$ |
$2$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$0.223536291$ |
$5.622208826$ |
5.027070840 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -1\bigr] \) |
${y}^2+{y}={x}^{3}-1$ |
59049.1-a2 |
59049.1-a |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
59049.1 |
\( 3^{10} \) |
\( 3^{22} \) |
$2.78594$ |
$(3)$ |
$2$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3 \) |
$2.011826621$ |
$1.874069608$ |
5.027070840 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 20\bigr] \) |
${y}^2+{y}={x}^{3}+20$ |
59049.1-b1 |
59049.1-b |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
59049.1 |
\( 3^{10} \) |
\( 3^{26} \) |
$2.78594$ |
$(3)$ |
$0$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$1$ |
$1.299407292$ |
1.299407292 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -61\bigr] \) |
${y}^2+{y}={x}^{3}-61$ |
59049.1-b2 |
59049.1-b |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
59049.1 |
\( 3^{10} \) |
\( 3^{14} \) |
$2.78594$ |
$(3)$ |
$0$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3 \) |
$1$ |
$3.898221876$ |
1.299407292 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 2\bigr] \) |
${y}^2+{y}={x}^{3}+2$ |
72900.1-c1 |
72900.1-c |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.1 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{4} \) |
$2.93664$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3^{2} \) |
$0.729400022$ |
$2.987244193$ |
4.357791961 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -4 i - 3\bigr] \) |
${y}^2={x}^{3}-4i-3$ |
72900.1-c2 |
72900.1-c |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.1 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{18} \cdot 5^{4} \) |
$2.93664$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$2.188200066$ |
$0.995748064$ |
4.357791961 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 108 i + 81\bigr] \) |
${y}^2={x}^{3}+108i+81$ |
72900.1-d1 |
72900.1-d |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.1 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{8} \) |
$2.93664$ |
$(a+1), (-a-2), (3)$ |
$0$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3^{2} \) |
$1$ |
$2.201020340$ |
2.201020340 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( -4 i - 12\bigr] \) |
${y}^2+\left(i+1\right){y}={x}^{3}-4i-12$ |
72900.1-d2 |
72900.1-d |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.1 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{18} \cdot 5^{8} \) |
$2.93664$ |
$(a+1), (-a-2), (3)$ |
$0$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 3 \) |
$1$ |
$0.733673446$ |
2.201020340 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( 94 i + 324\bigr] \) |
${y}^2+\left(i+1\right){y}={x}^{3}+94i+324$ |
72900.1-e1 |
72900.1-e |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.1 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{8} \) |
$2.93664$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3^{2} \) |
$1.241122201$ |
$1.746951002$ |
4.336359348 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 24 i - 7\bigr] \) |
${y}^2={x}^{3}+24i-7$ |
72900.1-e2 |
72900.1-e |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.1 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{18} \cdot 5^{8} \) |
$2.93664$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$3.723366605$ |
$0.582317000$ |
4.336359348 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -648 i + 189\bigr] \) |
${y}^2={x}^{3}-648i+189$ |
72900.1-f1 |
72900.1-f |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.1 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{4} \) |
$2.93664$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3^{2} \) |
$0.650280536$ |
$3.763691840$ |
4.894911098 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( -2 i + 2\bigr] \) |
${y}^2+\left(i+1\right){y}={x}^{3}-2i+2$ |
72900.1-f2 |
72900.1-f |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.1 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{18} \cdot 5^{4} \) |
$2.93664$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$1.950841609$ |
$1.254563946$ |
4.894911098 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( 40 i - 54\bigr] \) |
${y}^2+\left(i+1\right){y}={x}^{3}+40i-54$ |
72900.3-c1 |
72900.3-c |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.3 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{8} \) |
$2.93664$ |
$(a+1), (2a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3^{2} \) |
$1.241122201$ |
$1.746951002$ |
4.336359348 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -24 i - 7\bigr] \) |
${y}^2={x}^{3}-24i-7$ |
72900.3-c2 |
72900.3-c |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.3 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{18} \cdot 5^{8} \) |
$2.93664$ |
$(a+1), (2a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$3.723366605$ |
$0.582317000$ |
4.336359348 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 648 i + 189\bigr] \) |
${y}^2={x}^{3}+648i+189$ |
72900.3-d1 |
72900.3-d |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.3 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{4} \) |
$2.93664$ |
$(a+1), (2a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3^{2} \) |
$0.650280536$ |
$3.763691840$ |
4.894911098 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( -2 i - 2\bigr] \) |
${y}^2+\left(i+1\right){y}={x}^{3}-2i-2$ |
72900.3-d2 |
72900.3-d |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.3 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{18} \cdot 5^{4} \) |
$2.93664$ |
$(a+1), (2a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$1.950841609$ |
$1.254563946$ |
4.894911098 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( 40 i + 54\bigr] \) |
${y}^2+\left(i+1\right){y}={x}^{3}+40i+54$ |
72900.3-e1 |
72900.3-e |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.3 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{4} \) |
$2.93664$ |
$(a+1), (2a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3^{2} \) |
$0.729400022$ |
$2.987244193$ |
4.357791961 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -4 i + 3\bigr] \) |
${y}^2={x}^{3}-4i+3$ |
72900.3-e2 |
72900.3-e |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.3 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{18} \cdot 5^{4} \) |
$2.93664$ |
$(a+1), (2a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$2.188200066$ |
$0.995748064$ |
4.357791961 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 108 i - 81\bigr] \) |
${y}^2={x}^{3}+108i-81$ |
72900.3-f1 |
72900.3-f |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.3 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{8} \) |
$2.93664$ |
$(a+1), (2a+1), (3)$ |
$0$ |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 3^{2} \) |
$1$ |
$2.201020340$ |
2.201020340 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( -4 i + 12\bigr] \) |
${y}^2+\left(i+1\right){y}={x}^{3}-4i+12$ |
72900.3-f2 |
72900.3-f |
$2$ |
$3$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72900.3 |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{18} \cdot 5^{8} \) |
$2.93664$ |
$(a+1), (2a+1), (3)$ |
$0$ |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 3 \) |
$1$ |
$0.733673446$ |
2.201020340 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( 94 i - 324\bigr] \) |
${y}^2+\left(i+1\right){y}={x}^{3}+94i-324$ |
82944.1-j1 |
82944.1-j |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
82944.1 |
\( 2^{10} \cdot 3^{4} \) |
\( 2^{14} \cdot 3^{6} \) |
$3.03295$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.627864011$ |
$3.611983263$ |
4.535668605 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -2 i - 2\bigr] \) |
${y}^2={x}^{3}-2i-2$ |
82944.1-j2 |
82944.1-j |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
82944.1 |
\( 2^{10} \cdot 3^{4} \) |
\( 2^{14} \cdot 3^{18} \) |
$3.03295$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.883592035$ |
$1.203994421$ |
4.535668605 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 54 i + 54\bigr] \) |
${y}^2={x}^{3}+54i+54$ |
82944.1-k1 |
82944.1-k |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
82944.1 |
\( 2^{10} \cdot 3^{4} \) |
\( 2^{14} \cdot 3^{18} \) |
$3.03295$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.883592035$ |
$1.203994421$ |
4.535668605 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -54 i + 54\bigr] \) |
${y}^2={x}^{3}-54i+54$ |
82944.1-k2 |
82944.1-k |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
82944.1 |
\( 2^{10} \cdot 3^{4} \) |
\( 2^{14} \cdot 3^{6} \) |
$3.03295$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.627864011$ |
$3.611983263$ |
4.535668605 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 2 i - 2\bigr] \) |
${y}^2={x}^{3}+2i-2$ |
93636.1-a1 |
93636.1-a |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
93636.1 |
\( 2^{2} \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{18} \cdot 17^{6} \) |
$3.12629$ |
$(a+1), (a+4), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$0.412966679$ |
1.238900038 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 1404 i - 1269\bigr] \) |
${y}^2={x}^{3}+1404i-1269$ |
93636.1-a2 |
93636.1-a |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
93636.1 |
\( 2^{2} \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 17^{6} \) |
$3.12629$ |
$(a+1), (a+4), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$1.238900038$ |
1.238900038 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -52 i + 47\bigr] \) |
${y}^2={x}^{3}-52i+47$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.