Learn more

Refine search


Results (1-50 of 52 matches)

Next   Download to          
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
324.1-a1 324.1-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \) $0$ $\Z/6\Z$ $-3$ $1$ $5.108115717$ 0.851352619 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -1\bigr] \) ${y}^2={x}^{3}-1$
324.1-a2 324.1-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \) $0$ $\Z/2\Z$ $-3$ $1$ $1.702705239$ 0.851352619 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 27\bigr] \) ${y}^2={x}^{3}+27$
729.1-a3 729.1-a \(\Q(\sqrt{-1}) \) \( 3^{6} \) $0$ $\Z/3\Z$ $-3$ $1$ $8.108628264$ 0.900958696 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+{y}={x}^{3}$
729.1-a4 729.1-a \(\Q(\sqrt{-1}) \) \( 3^{6} \) $0$ $\Z/3\Z$ $-3$ $1$ $2.702876088$ 0.900958696 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -7\bigr] \) ${y}^2+{y}={x}^{3}-7$
2916.1-b1 2916.1-b \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \) $1$ $\Z/3\Z$ $-3$ $0.450320685$ $6.435822518$ 1.932122672 \( 0 \) \( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( -i\bigr] \) ${y}^2+\left(i+1\right){y}={x}^{3}-i$
2916.1-b2 2916.1-b \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \) $1$ $\mathsf{trivial}$ $-3$ $0.150106895$ $2.145274172$ 1.932122672 \( 0 \) \( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( 13 i\bigr] \) ${y}^2+\left(i+1\right){y}={x}^{3}+13i$
18225.1-c1 18225.1-c \(\Q(\sqrt{-1}) \) \( 3^{6} \cdot 5^{2} \) $0$ $\Z/3\Z$ $-3$ $1$ $2.773111858$ 0.924370619 \( 0 \) \( \bigl[0\) , \( 0\) , \( i\) , \( 0\) , \( -6 i + 2\bigr] \) ${y}^2+i{y}={x}^{3}-6i+2$
18225.1-c2 18225.1-c \(\Q(\sqrt{-1}) \) \( 3^{6} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $0.924370619$ 0.924370619 \( 0 \) \( \bigl[0\) , \( 0\) , \( i\) , \( 0\) , \( 162 i - 47\bigr] \) ${y}^2+i{y}={x}^{3}+162i-47$
18225.1-d1 18225.1-d \(\Q(\sqrt{-1}) \) \( 3^{6} \cdot 5^{2} \) $1$ $\Z/3\Z$ $-3$ $0.823072945$ $4.741954575$ 2.601983013 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -i - 1\bigr] \) ${y}^2+{y}={x}^{3}-i-1$
18225.1-d2 18225.1-d \(\Q(\sqrt{-1}) \) \( 3^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $-3$ $0.274357648$ $1.580651525$ 2.601983013 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 27 i + 20\bigr] \) ${y}^2+{y}={x}^{3}+27i+20$
18225.3-c1 18225.3-c \(\Q(\sqrt{-1}) \) \( 3^{6} \cdot 5^{2} \) $1$ $\Z/3\Z$ $-3$ $0.823072945$ $4.741954575$ 2.601983013 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( i - 1\bigr] \) ${y}^2+{y}={x}^{3}+i-1$
18225.3-c2 18225.3-c \(\Q(\sqrt{-1}) \) \( 3^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $-3$ $0.274357648$ $1.580651525$ 2.601983013 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -27 i + 20\bigr] \) ${y}^2+{y}={x}^{3}-27i+20$
18225.3-d1 18225.3-d \(\Q(\sqrt{-1}) \) \( 3^{6} \cdot 5^{2} \) $0$ $\Z/3\Z$ $-3$ $1$ $2.773111858$ 0.924370619 \( 0 \) \( \bigl[0\) , \( 0\) , \( i\) , \( 0\) , \( 6 i + 2\bigr] \) ${y}^2+i{y}={x}^{3}+6i+2$
18225.3-d2 18225.3-d \(\Q(\sqrt{-1}) \) \( 3^{6} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $0.924370619$ 0.924370619 \( 0 \) \( \bigl[0\) , \( 0\) , \( i\) , \( 0\) , \( -162 i - 47\bigr] \) ${y}^2+i{y}={x}^{3}-162i-47$
20736.1-d1 20736.1-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-3$ $0.653234677$ $5.108115717$ 3.336798323 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -i\bigr] \) ${y}^2={x}^{3}-i$
20736.1-d2 20736.1-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-3$ $1.959704032$ $1.702705239$ 3.336798323 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 27 i\bigr] \) ${y}^2={x}^{3}+27i$
32400.1-c1 32400.1-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-3$ $0.417946696$ $2.284418796$ 3.819061154 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 2 i - 11\bigr] \) ${y}^2={x}^{3}+2i-11$
32400.1-c2 32400.1-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-3$ $1.253840088$ $0.761472932$ 3.819061154 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -54 i + 297\bigr] \) ${y}^2={x}^{3}-54i+297$
32400.3-c1 32400.3-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-3$ $1.253840088$ $0.761472932$ 3.819061154 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 54 i + 297\bigr] \) ${y}^2={x}^{3}+54i+297$
32400.3-c2 32400.3-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-3$ $0.417946696$ $2.284418796$ 3.819061154 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -2 i - 11\bigr] \) ${y}^2={x}^{3}-2i-11$
50625.3-c1 50625.3-c \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 5^{4} \) $1$ $\mathsf{trivial}$ $-3$ $0.460920105$ $1.580651525$ 2.914216267 \( 0 \) \( \bigl[0\) , \( 0\) , \( i\) , \( 0\) , \( 34\bigr] \) ${y}^2+i{y}={x}^{3}+34$
50625.3-c2 50625.3-c \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 5^{4} \) $1$ $\mathsf{trivial}$ $-3$ $0.153640035$ $4.741954575$ 2.914216267 \( 0 \) \( \bigl[0\) , \( 0\) , \( i\) , \( 0\) , \( -1\bigr] \) ${y}^2+i{y}={x}^{3}-1$
50625.3-f1 50625.3-f \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 5^{4} \) $1$ $\Z/3\Z$ $-3$ $1.007478452$ $0.948390915$ 3.821933646 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 156\bigr] \) ${y}^2+{y}={x}^{3}+156$
50625.3-f2 50625.3-f \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 5^{4} \) $1$ $\mathsf{trivial}$ $-3$ $3.022435358$ $0.316130305$ 3.821933646 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -4219\bigr] \) ${y}^2+{y}={x}^{3}-4219$
59049.1-a1 59049.1-a \(\Q(\sqrt{-1}) \) \( 3^{10} \) $2$ $\mathsf{trivial}$ $-3$ $0.223536291$ $5.622208826$ 5.027070840 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -1\bigr] \) ${y}^2+{y}={x}^{3}-1$
59049.1-a2 59049.1-a \(\Q(\sqrt{-1}) \) \( 3^{10} \) $2$ $\Z/3\Z$ $-3$ $2.011826621$ $1.874069608$ 5.027070840 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 20\bigr] \) ${y}^2+{y}={x}^{3}+20$
59049.1-b1 59049.1-b \(\Q(\sqrt{-1}) \) \( 3^{10} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $1.299407292$ 1.299407292 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -61\bigr] \) ${y}^2+{y}={x}^{3}-61$
59049.1-b2 59049.1-b \(\Q(\sqrt{-1}) \) \( 3^{10} \) $0$ $\Z/3\Z$ $-3$ $1$ $3.898221876$ 1.299407292 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 2\bigr] \) ${y}^2+{y}={x}^{3}+2$
72900.1-c1 72900.1-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $1$ $\Z/3\Z$ $-3$ $0.729400022$ $2.987244193$ 4.357791961 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -4 i - 3\bigr] \) ${y}^2={x}^{3}-4i-3$
72900.1-c2 72900.1-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $-3$ $2.188200066$ $0.995748064$ 4.357791961 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 108 i + 81\bigr] \) ${y}^2={x}^{3}+108i+81$
72900.1-d1 72900.1-d \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $0$ $\Z/3\Z$ $-3$ $1$ $2.201020340$ 2.201020340 \( 0 \) \( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( -4 i - 12\bigr] \) ${y}^2+\left(i+1\right){y}={x}^{3}-4i-12$
72900.1-d2 72900.1-d \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $0.733673446$ 2.201020340 \( 0 \) \( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( 94 i + 324\bigr] \) ${y}^2+\left(i+1\right){y}={x}^{3}+94i+324$
72900.1-e1 72900.1-e \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $1$ $\Z/3\Z$ $-3$ $1.241122201$ $1.746951002$ 4.336359348 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 24 i - 7\bigr] \) ${y}^2={x}^{3}+24i-7$
72900.1-e2 72900.1-e \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $-3$ $3.723366605$ $0.582317000$ 4.336359348 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -648 i + 189\bigr] \) ${y}^2={x}^{3}-648i+189$
72900.1-f1 72900.1-f \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $1$ $\Z/3\Z$ $-3$ $0.650280536$ $3.763691840$ 4.894911098 \( 0 \) \( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( -2 i + 2\bigr] \) ${y}^2+\left(i+1\right){y}={x}^{3}-2i+2$
72900.1-f2 72900.1-f \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $-3$ $1.950841609$ $1.254563946$ 4.894911098 \( 0 \) \( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( 40 i - 54\bigr] \) ${y}^2+\left(i+1\right){y}={x}^{3}+40i-54$
72900.3-c1 72900.3-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $1$ $\Z/3\Z$ $-3$ $1.241122201$ $1.746951002$ 4.336359348 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -24 i - 7\bigr] \) ${y}^2={x}^{3}-24i-7$
72900.3-c2 72900.3-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $-3$ $3.723366605$ $0.582317000$ 4.336359348 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 648 i + 189\bigr] \) ${y}^2={x}^{3}+648i+189$
72900.3-d1 72900.3-d \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $1$ $\Z/3\Z$ $-3$ $0.650280536$ $3.763691840$ 4.894911098 \( 0 \) \( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( -2 i - 2\bigr] \) ${y}^2+\left(i+1\right){y}={x}^{3}-2i-2$
72900.3-d2 72900.3-d \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $-3$ $1.950841609$ $1.254563946$ 4.894911098 \( 0 \) \( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( 40 i + 54\bigr] \) ${y}^2+\left(i+1\right){y}={x}^{3}+40i+54$
72900.3-e1 72900.3-e \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $1$ $\Z/3\Z$ $-3$ $0.729400022$ $2.987244193$ 4.357791961 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -4 i + 3\bigr] \) ${y}^2={x}^{3}-4i+3$
72900.3-e2 72900.3-e \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $-3$ $2.188200066$ $0.995748064$ 4.357791961 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 108 i - 81\bigr] \) ${y}^2={x}^{3}+108i-81$
72900.3-f1 72900.3-f \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $0$ $\Z/3\Z$ $-3$ $1$ $2.201020340$ 2.201020340 \( 0 \) \( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( -4 i + 12\bigr] \) ${y}^2+\left(i+1\right){y}={x}^{3}-4i+12$
72900.3-f2 72900.3-f \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $0.733673446$ 2.201020340 \( 0 \) \( \bigl[0\) , \( 0\) , \( i + 1\) , \( 0\) , \( 94 i - 324\bigr] \) ${y}^2+\left(i+1\right){y}={x}^{3}+94i-324$
82944.1-j1 82944.1-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-3$ $0.627864011$ $3.611983263$ 4.535668605 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -2 i - 2\bigr] \) ${y}^2={x}^{3}-2i-2$
82944.1-j2 82944.1-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-3$ $1.883592035$ $1.203994421$ 4.535668605 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 54 i + 54\bigr] \) ${y}^2={x}^{3}+54i+54$
82944.1-k1 82944.1-k \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-3$ $1.883592035$ $1.203994421$ 4.535668605 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -54 i + 54\bigr] \) ${y}^2={x}^{3}-54i+54$
82944.1-k2 82944.1-k \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-3$ $0.627864011$ $3.611983263$ 4.535668605 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 2 i - 2\bigr] \) ${y}^2={x}^{3}+2i-2$
93636.1-a1 93636.1-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 17^{2} \) $0$ $\Z/2\Z$ $-3$ $1$ $0.412966679$ 1.238900038 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 1404 i - 1269\bigr] \) ${y}^2={x}^{3}+1404i-1269$
93636.1-a2 93636.1-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 17^{2} \) $0$ $\Z/2\Z$ $-3$ $1$ $1.238900038$ 1.238900038 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -52 i + 47\bigr] \) ${y}^2={x}^{3}-52i+47$
Next   Download to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.