Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
1800.2-b1 |
1800.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
1800.2 |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{16} \) |
$1.16409$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{7} \) |
$1$ |
$0.765787510$ |
1.531575020 |
\( -\frac{27995042}{1171875} \) |
\( \bigl[i + 1\) , \( 0\) , \( 0\) , \( 20\) , \( 300 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+20{x}+300i$ |
16200.2-c1 |
16200.2-c |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
16200.2 |
\( 2^{3} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{14} \cdot 5^{16} \) |
$2.01626$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.255262503$ |
2.042100027 |
\( -\frac{27995042}{1171875} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 180\) , \( 8100 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+180{x}+8100i$ |
18000.2-a1 |
18000.2-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.2 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{22} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.342470585$ |
1.369882343 |
\( -\frac{27995042}{1171875} \) |
\( \bigl[i + 1\) , \( 1\) , \( 0\) , \( -80 i - 60\) , \( -3300 i - 600\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-80i-60\right){x}-3300i-600$ |
18000.3-b1 |
18000.3-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{22} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.342470585$ |
1.369882343 |
\( -\frac{27995042}{1171875} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 80 i - 60\) , \( 3300 i - 600\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(80i-60\right){x}+3300i-600$ |
45000.3-e1 |
45000.3-e |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
45000.3 |
\( 2^{3} \cdot 3^{2} \cdot 5^{4} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{28} \) |
$2.60299$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1.601298680$ |
$0.153157502$ |
3.924014493 |
\( -\frac{27995042}{1171875} \) |
\( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i + 502\) , \( -36999 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+502\right){x}-36999i$ |
57600.2-a1 |
57600.2-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{22} \cdot 3^{2} \cdot 5^{16} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.871666361$ |
$0.382893755$ |
5.340089699 |
\( -\frac{27995042}{1171875} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 80\) , \( -2400 i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+80{x}-2400i$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.