Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
50700.3-a1
50700.3-a
$1$
$1$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
50700.3
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \)
\( 2^{10} \cdot 3^{11} \cdot 5^{4} \cdot 13^{8} \)
$2.32248$
$(-2a+1), (4a-3), (2), (5)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$1$
\( 2 \)
$1$
$0.301248308$
0.695703166
\( \frac{46880677}{291600} a + \frac{205902887}{583200} \)
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 386 a - 127\) , \( -4431 a + 3411\bigr] \)
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(386a-127\right){x}-4431a+3411$
50700.3-c1
50700.3-c
$1$
$1$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
50700.3
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \)
\( 2^{10} \cdot 3^{11} \cdot 5^{4} \cdot 13^{2} \)
$2.32248$
$(-2a+1), (4a-3), (2), (5)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$1$
\( 2 \cdot 5 \cdot 11 \)
$0.015980506$
$1.086166221$
4.409393735
\( \frac{46880677}{291600} a + \frac{205902887}{583200} \)
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -22 a - 7\) , \( -51 a + 99\bigr] \)
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-22a-7\right){x}-51a+99$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.