Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
6400.1-c2 |
6400.1-c |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
6400.1 |
\( 2^{8} \cdot 5^{2} \) |
\( 2^{22} \cdot 5^{4} \) |
$1.38434$ |
$(2), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.522239772$ |
$1.687631673$ |
2.035386900 |
\( \frac{3721734}{25} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 41 a - 41\) , \( 116 a - 58\bigr] \) |
${y}^2={x}^{3}+\left(41a-41\right){x}+116a-58$ |
6400.1-e2 |
6400.1-e |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
6400.1 |
\( 2^{8} \cdot 5^{2} \) |
\( 2^{22} \cdot 5^{4} \) |
$1.38434$ |
$(2), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.522239772$ |
$1.687631673$ |
2.035386900 |
\( \frac{3721734}{25} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -41 a\) , \( -116 a + 58\bigr] \) |
${y}^2={x}^{3}-41a{x}-116a+58$ |
14400.1-e2 |
14400.1-e |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
14400.1 |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{22} \cdot 3^{6} \cdot 5^{4} \) |
$1.69547$ |
$(-2a+1), (2), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.974354601$ |
2.250175564 |
\( \frac{3721734}{25} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -123\) , \( -522\bigr] \) |
${y}^2={x}^{3}-123{x}-522$ |
57600.1-e2 |
57600.1-e |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
57600.1 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{22} \cdot 3^{6} \cdot 5^{4} \) |
$2.39775$ |
$(-2a+1), (2), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.190919584$ |
$0.974354601$ |
3.436820672 |
\( \frac{3721734}{25} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -123\) , \( 522\bigr] \) |
${y}^2={x}^{3}-123{x}+522$ |
78400.1-b2 |
78400.1-b |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
78400.1 |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{22} \cdot 5^{4} \cdot 7^{6} \) |
$2.58987$ |
$(-3a+1), (2), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$2.360584082$ |
$0.637864816$ |
3.477342639 |
\( \frac{3721734}{25} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 123 a - 328\) , \( 1160 a - 2146\bigr] \) |
${y}^2={x}^{3}+\left(123a-328\right){x}+1160a-2146$ |
78400.3-b2 |
78400.3-b |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
78400.3 |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{22} \cdot 5^{4} \cdot 7^{6} \) |
$2.58987$ |
$(3a-2), (2), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$2.360584082$ |
$0.637864816$ |
3.477342639 |
\( \frac{3721734}{25} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -123 a - 205\) , \( -1160 a - 986\bigr] \) |
${y}^2={x}^{3}+\left(-123a-205\right){x}-1160a-986$ |
102400.1-j2 |
102400.1-j |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
102400.1 |
\( 2^{12} \cdot 5^{2} \) |
\( 2^{34} \cdot 5^{4} \) |
$2.76869$ |
$(2), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.843815836$ |
1.948709202 |
\( \frac{3721734}{25} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 164\) , \( 928 a - 464\bigr] \) |
${y}^2={x}^{3}+164{x}+928a-464$ |
102400.1-m2 |
102400.1-m |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
102400.1 |
\( 2^{12} \cdot 5^{2} \) |
\( 2^{34} \cdot 5^{4} \) |
$2.76869$ |
$(2), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.843815836$ |
1.948709202 |
\( \frac{3721734}{25} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -164 a\) , \( -928 a + 464\bigr] \) |
${y}^2={x}^{3}-164a{x}-928a+464$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.