Learn more

Refine search


Results (5 matches)

  Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
4800.1-a3 4800.1-a \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $1.531575020$ 1.768510500 \( \frac{3631696}{2025} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -20\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}-20{x}$
19200.1-c3 19200.1-c \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $1.531575020$ 1.768510500 \( \frac{3631696}{2025} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -20\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}-20{x}$
57600.1-h3 57600.1-h \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.884255250$ 1.021050013 \( \frac{3631696}{2025} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 62 a - 61\) , \( -61 a + 61\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(62a-61\right){x}-61a+61$
57600.1-i3 57600.1-i \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.884255250$ 1.021050013 \( \frac{3631696}{2025} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -60 a\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}-60a{x}$
120000.1-c3 120000.1-c \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{4} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $1.886796114$ $0.306315004$ 5.338909986 \( \frac{3631696}{2025} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -508\) , \( 1012\bigr] \) ${y}^2={x}^{3}-{x}^{2}-508{x}+1012$
  Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.