Learn more

Refine search


Results (9 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
300.1-a2 300.1-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \) 0 $\Z/12\Z$ $\mathrm{SU}(2)$ $1$ $3.882870421$ 0.747258760 \( \frac{357911}{2160} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( a - 2\) , \( 2\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(a-2\right){x}+2$
7500.1-b2 7500.1-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{4} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.776574084$ 1.793421026 \( \frac{357911}{2160} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 37\) , \( 281\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+37{x}+281$
19200.1-e2 19200.1-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.970717605$ 2.241776282 \( \frac{357911}{2160} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 24\) , \( -144\bigr] \) ${y}^2={x}^{3}-{x}^{2}+24{x}-144$
44100.1-b2 44100.1-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.847311791$ 1.956782763 \( \frac{357911}{2160} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( -20 a - 14\) , \( 100 a - 228\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-20a-14\right){x}+100a-228$
44100.3-b2 44100.3-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.847311791$ 1.956782763 \( \frac{357911}{2160} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 1\) , \( 13 a + 22\) , \( -135 a - 115\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(13a+22\right){x}-135a-115$
50700.1-b2 50700.1-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.547744533$ $1.076914492$ 2.724511424 \( \frac{357911}{2160} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( -23 a + 10\) , \( 81 a + 38\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(-23a+10\right){x}+81a+38$
50700.3-b2 50700.3-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.547744533$ $1.076914492$ 2.724511424 \( \frac{357911}{2160} \) \( \bigl[a\) , \( -a\) , \( 1\) , \( 22 a - 12\) , \( -81 a + 119\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(22a-12\right){x}-81a+119$
57600.1-a2 57600.1-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.427139629$ $0.560444070$ 3.694265501 \( \frac{357911}{2160} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 72 a\) , \( -864 a + 432\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+72a{x}-864a+432$
57600.1-p2 57600.1-p \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.427139629$ $0.560444070$ 3.694265501 \( \frac{357911}{2160} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 72 a\) , \( 864 a - 432\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+72a{x}+864a-432$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.