Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
16384.1-c1 16384.1-c \(\Q(\sqrt{-3}) \) \( 2^{14} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.435278787$ $5.276710919$ 2.652162765 \( 3456 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -a\) , \( 2 a - 1\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}-a{x}+2a-1$
16384.1-d1 16384.1-d \(\Q(\sqrt{-3}) \) \( 2^{14} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.638355459$ 1.523255234 \( 3456 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -7 a\) , \( 2 a - 1\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}-7a{x}+2a-1$
16384.1-e1 16384.1-e \(\Q(\sqrt{-3}) \) \( 2^{14} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.435278787$ $5.276710919$ 2.652162765 \( 3456 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a + 2\) , \( 1\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(a+2\right){x}+1$
16384.1-f1 16384.1-f \(\Q(\sqrt{-3}) \) \( 2^{14} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.638355459$ 1.523255234 \( 3456 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -7 a\) , \( -2 a + 1\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}-7a{x}-2a+1$
147456.1-g1 147456.1-g \(\Q(\sqrt{-3}) \) \( 2^{14} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.955972523$ $1.523255234$ 3.362927102 \( 3456 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -24\) , \( 32\bigr] \) ${y}^2={x}^{3}-24{x}+32$
147456.1-h1 147456.1-h \(\Q(\sqrt{-3}) \) \( 2^{14} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.597136445$ $3.046510469$ 4.201221868 \( 3456 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -6 a + 6\) , \( 4\bigr] \) ${y}^2={x}^{3}+\left(-6a+6\right){x}+4$
147456.1-bo1 147456.1-bo \(\Q(\sqrt{-3}) \) \( 2^{14} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.513210019$ $1.523255234$ 5.323181222 \( 3456 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 24 a\) , \( -32\bigr] \) ${y}^2={x}^{3}+24a{x}-32$
147456.1-bp1 147456.1-bp \(\Q(\sqrt{-3}) \) \( 2^{14} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.776075070$ $3.046510469$ 5.460165067 \( 3456 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -6\) , \( -4\bigr] \) ${y}^2={x}^{3}-6{x}-4$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.