Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
1083.2-b5 |
1083.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
1083.2 |
\( 3 \cdot 19^{2} \) |
\( 3^{4} \cdot 19^{4} \) |
$0.88788$ |
$(-2a+1), (-5a+3), (-5a+2)$ |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$3.264688998$ |
0.942434535 |
\( \frac{30664297}{3249} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -7\) , \( 5\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-7{x}+5$ |
61731.2-b4 |
61731.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
61731.2 |
\( 3^{2} \cdot 19^{3} \) |
\( 3^{10} \cdot 19^{10} \) |
$2.43964$ |
$(-2a+1), (-5a+3), (-5a+2)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$0.432418621$ |
0.998628029 |
\( \frac{30664297}{3249} \) |
\( \bigl[1\) , \( a\) , \( a + 1\) , \( -313 a + 410\) , \( 979 a + 1998\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-313a+410\right){x}+979a+1998$ |
61731.3-b4 |
61731.3-b |
$6$ |
$8$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
61731.3 |
\( 3^{2} \cdot 19^{3} \) |
\( 3^{10} \cdot 19^{10} \) |
$2.43964$ |
$(-2a+1), (-5a+3), (-5a+2)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$0.432418621$ |
0.998628029 |
\( \frac{30664297}{3249} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a\) , \( 97 a - 410\) , \( -980 a + 2978\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(97a-410\right){x}-980a+2978$ |
Download to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.