Learn more

Refine search


Results (21 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
192.1-a4 192.1-a \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $7.270694035$ 0.524717144 \( \frac{2048}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( a - 1\) , \( 0\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(a-1\right){x}$
768.1-a4 768.1-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.270694035$ 1.049434289 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( a - 1\) , \( 0\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(a-1\right){x}$
2304.1-a4 2304.1-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.197737158$ 1.211782339 \( \frac{2048}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a - 2\) , \( -2 a\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(a-2\right){x}-2a$
2304.1-b4 2304.1-b \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.197737158$ 1.211782339 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( a - 2\) , \( 2 a\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(a-2\right){x}+2a$
12288.1-b4 12288.1-b \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.539636932$ $3.635347017$ 2.265254003 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -3 a\) , \( -3\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}-3a{x}-3$
12288.1-g4 12288.1-g \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.635347017$ 2.098868579 \( \frac{2048}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 3\) , \( 3\bigr] \) ${y}^2={x}^{3}+{x}^{2}+3{x}+3$
28224.1-c4 28224.1-c \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.441442526$ $1.586595513$ 3.234966217 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -5 a + 16\) , \( 14 a - 36\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-5a+16\right){x}+14a-36$
28224.3-c4 28224.3-c \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.441442526$ $1.586595513$ 3.234966217 \( \frac{2048}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -15 a + 6\) , \( -24 a - 6\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-15a+6\right){x}-24a-6$
32448.1-e4 32448.1-e \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 13^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.016527704$ 2.328485625 \( \frac{2048}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -10 a + 5\) , \( 6 a + 6\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-10a+5\right){x}+6a+6$
32448.3-e4 32448.3-e \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 13^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.016527704$ 2.328485625 \( \frac{2048}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -5 a + 10\) , \( -6 a + 12\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-5a+10\right){x}-6a+12$
36864.1-l4 36864.1-l \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.696545314$ $2.098868579$ 3.376245242 \( \frac{2048}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -7 a + 8\) , \( 10 a - 1\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-7a+8\right){x}+10a-1$
36864.1-m4 36864.1-m \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.696545314$ $2.098868579$ 3.376245242 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -7 a + 8\) , \( -10 a + 1\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-7a+8\right){x}-10a+1$
37632.1-e4 37632.1-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.748064039$ 1.586595513 \( \frac{2048}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 2 a - 5\) , \( 4 a + 2\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(2a-5\right){x}+4a+2$
37632.1-k4 37632.1-k \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.286163271$ $2.748064039$ 4.081241752 \( \frac{2048}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 3 a + 2\) , \( -4 a - 2\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(3a+2\right){x}-4a-2$
37632.3-e4 37632.3-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.748064039$ 1.586595513 \( \frac{2048}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -3 a + 5\) , \( -4 a + 6\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-3a+5\right){x}-4a+6$
37632.3-k4 37632.3-k \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.286163271$ $2.748064039$ 4.081241752 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -3 a + 5\) , \( 4 a - 6\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-3a+5\right){x}+4a-6$
112896.1-p4 112896.1-p \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.182551022$ $1.586595513$ 4.332967921 \( \frac{2048}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -5 a + 16\) , \( -14 a + 36\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-5a+16\right){x}-14a+36$
112896.3-p4 112896.3-p \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.182551022$ $1.586595513$ 4.332967921 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -15 a + 6\) , \( 24 a + 6\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-15a+6\right){x}+24a+6$
120000.1-h4 120000.1-h \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{4} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.665930347$ $1.454138807$ 5.594510179 \( \frac{2048}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 17\) , \( 38\bigr] \) ${y}^2={x}^{3}+{x}^{2}+17{x}+38$
129792.1-d4 129792.1-d \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.695770643$ $2.016527704$ 3.948577566 \( \frac{2048}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 5 a + 5\) , \( -6 a - 6\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(5a+5\right){x}-6a-6$
129792.3-d4 129792.3-d \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.695770643$ $2.016527704$ 3.948577566 \( \frac{2048}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 10 a - 5\) , \( 6 a - 12\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(10a-5\right){x}+6a-12$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.