Learn more

Refine search

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.


Results (24 matches)

  Download to        
Label Base field Conductor Isogeny class Weierstrass coefficients
1024.1-a1 \(\Q(\sqrt{-3}) \) 1024.1 1024.1-a \( \bigl[0\) , \( 0\) , \( 0\) , \( -1\) , \( 0\bigr] \)
1024.1-a2 \(\Q(\sqrt{-3}) \) 1024.1 1024.1-a \( \bigl[0\) , \( 0\) , \( 0\) , \( 4\) , \( 0\bigr] \)
4096.1-c1 \(\Q(\sqrt{-3}) \) 4096.1 4096.1-c \( \bigl[0\) , \( 0\) , \( 0\) , \( a - 1\) , \( 0\bigr] \)
4096.1-c2 \(\Q(\sqrt{-3}) \) 4096.1 4096.1-c \( \bigl[0\) , \( 0\) , \( 0\) , \( -4 a + 4\) , \( 0\bigr] \)
9216.1-d1 \(\Q(\sqrt{-3}) \) 9216.1 9216.1-d \( \bigl[0\) , \( 0\) , \( 0\) , \( 3 a - 3\) , \( 0\bigr] \)
9216.1-d2 \(\Q(\sqrt{-3}) \) 9216.1 9216.1-d \( \bigl[0\) , \( 0\) , \( 0\) , \( -12 a + 12\) , \( 0\bigr] \)
36864.1-j1 \(\Q(\sqrt{-3}) \) 36864.1 36864.1-j \( \bigl[0\) , \( 0\) , \( 0\) , \( a + 1\) , \( 0\bigr] \)
36864.1-j2 \(\Q(\sqrt{-3}) \) 36864.1 36864.1-j \( \bigl[0\) , \( 0\) , \( 0\) , \( -4 a - 4\) , \( 0\bigr] \)
36864.1-k1 \(\Q(\sqrt{-3}) \) 36864.1 36864.1-k \( \bigl[0\) , \( 0\) , \( 0\) , \( 24 a - 12\) , \( 0\bigr] \)
36864.1-k2 \(\Q(\sqrt{-3}) \) 36864.1 36864.1-k \( \bigl[0\) , \( 0\) , \( 0\) , \( -6 a + 3\) , \( 0\bigr] \)
36864.1-n1 \(\Q(\sqrt{-3}) \) 36864.1 36864.1-n \( \bigl[0\) , \( 0\) , \( 0\) , \( 4 a - 8\) , \( 0\bigr] \)
36864.1-n2 \(\Q(\sqrt{-3}) \) 36864.1 36864.1-n \( \bigl[0\) , \( 0\) , \( 0\) , \( -a + 2\) , \( 0\bigr] \)
36864.1-o1 \(\Q(\sqrt{-3}) \) 36864.1 36864.1-o \( \bigl[0\) , \( 0\) , \( 0\) , \( 6 a - 3\) , \( 0\bigr] \)
36864.1-o2 \(\Q(\sqrt{-3}) \) 36864.1 36864.1-o \( \bigl[0\) , \( 0\) , \( 0\) , \( -24 a + 12\) , \( 0\bigr] \)
36864.1-p1 \(\Q(\sqrt{-3}) \) 36864.1 36864.1-p \( \bigl[0\) , \( 0\) , \( 0\) , \( 12 a - 12\) , \( 0\bigr] \)
36864.1-p2 \(\Q(\sqrt{-3}) \) 36864.1 36864.1-p \( \bigl[0\) , \( 0\) , \( 0\) , \( -3 a + 3\) , \( 0\bigr] \)
50176.1-i1 \(\Q(\sqrt{-3}) \) 50176.1 50176.1-i \( \bigl[0\) , \( 0\) , \( 0\) , \( -5 a - 3\) , \( 0\bigr] \)
50176.1-i2 \(\Q(\sqrt{-3}) \) 50176.1 50176.1-i \( \bigl[0\) , \( 0\) , \( 0\) , \( 20 a + 12\) , \( 0\bigr] \)
50176.3-g1 \(\Q(\sqrt{-3}) \) 50176.3 50176.3-g \( \bigl[0\) , \( 0\) , \( 0\) , \( 5 a - 8\) , \( 0\bigr] \)
50176.3-g2 \(\Q(\sqrt{-3}) \) 50176.3 50176.3-g \( \bigl[0\) , \( 0\) , \( 0\) , \( -20 a + 32\) , \( 0\bigr] \)
65536.1-c1 \(\Q(\sqrt{-3}) \) 65536.1 65536.1-c \( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( 0\bigr] \)
65536.1-c2 \(\Q(\sqrt{-3}) \) 65536.1 65536.1-c \( \bigl[0\) , \( 0\) , \( 0\) , \( 8\) , \( 0\bigr] \)
65536.1-d1 \(\Q(\sqrt{-3}) \) 65536.1 65536.1-d \( \bigl[0\) , \( 0\) , \( 0\) , \( 8 a\) , \( 0\bigr] \)
65536.1-d2 \(\Q(\sqrt{-3}) \) 65536.1 65536.1-d \( \bigl[0\) , \( 0\) , \( 0\) , \( -2 a\) , \( 0\bigr] \)
  Download to