Learn more

Refine search


Results (7 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
361.2-a3 361.2-a \(\Q(\sqrt{-3}) \) \( 19^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.225966868$ $0.935309008$ 0.488089257 \( \frac{14306161739497472}{322687697779} a - \frac{27123251845038080}{322687697779} \) \( \bigl[0\) , \( -a\) , \( 1\) , \( -99 a - 31\) , \( -498 a + 74\bigr] \) ${y}^2+{y}={x}^{3}-a{x}^{2}+\left(-99a-31\right){x}-498a+74$
61009.2-a2 61009.2-a \(\Q(\sqrt{-3}) \) \( 13^{2} \cdot 19^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.259408045$ 5.391694971 \( \frac{14306161739497472}{322687697779} a - \frac{27123251845038080}{322687697779} \) \( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -1705 a + 450\) , \( -24977 a + 20894\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1705a+450\right){x}-24977a+20894$
61009.8-a2 61009.8-a \(\Q(\sqrt{-3}) \) \( 13^{2} \cdot 19^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.259408045$ 5.391694971 \( \frac{14306161739497472}{322687697779} a - \frac{27123251845038080}{322687697779} \) \( \bigl[0\) , \( -1\) , \( 1\) , \( -580 a - 1155\) , \( -12873 a - 13415\bigr] \) ${y}^2+{y}={x}^{3}-{x}^{2}+\left(-580a-1155\right){x}-12873a-13415$
61731.2-a2 61731.2-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.182529221$ $0.123884704$ 2.706567867 \( \frac{14306161739497472}{322687697779} a - \frac{27123251845038080}{322687697779} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 19 a + 6700\) , \( -244436 a + 127622\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(19a+6700\right){x}-244436a+127622$
61731.3-a2 61731.3-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.182529221$ $0.123884704$ 2.706567867 \( \frac{14306161739497472}{322687697779} a - \frac{27123251845038080}{322687697779} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 7731 a - 4308\) , \( -195516 a - 34450\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(7731a-4308\right){x}-195516a-34450$
92416.2-u2 92416.2-u \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $11.02710220$ $0.233827252$ 5.954645201 \( \frac{14306161739497472}{322687697779} a - \frac{27123251845038080}{322687697779} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 2080 a - 1589\) , \( 33952 a - 6339\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(2080a-1589\right){x}+33952a-6339$
130321.3-b2 130321.3-b \(\Q(\sqrt{-3}) \) \( 19^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $9.202414482$ $0.049226789$ 4.184683936 \( \frac{14306161739497472}{322687697779} a - \frac{27123251845038080}{322687697779} \) \( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -11071 a + 46930\) , \( 3697362 a - 724183\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-11071a+46930\right){x}+3697362a-724183$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.