Learn more

Refine search


Results (5 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
4800.1-b3 4800.1-b \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.870396721$ 2.010095125 \( \frac{136835858}{1875} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -136 a + 136\) , \( 560\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-136a+136\right){x}+560$
19200.1-a3 19200.1-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 5^{2} \) $2$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.333808752$ $0.870396721$ 2.683949384 \( \frac{136835858}{1875} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -136\) , \( -560\bigr] \) ${y}^2={x}^{3}-{x}^{2}-136{x}-560$
57600.1-c3 57600.1-c \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.502523781$ 2.321057923 \( \frac{136835858}{1875} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -408 a\) , \( 3360 a - 1680\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}-408a{x}+3360a-1680$
57600.1-r3 57600.1-r \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.502523781$ 2.321057923 \( \frac{136835858}{1875} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 410 a - 409\) , \( -3769 a + 2089\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(410a-409\right){x}-3769a+2089$
120000.1-a3 120000.1-a \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.174079344$ 1.608076100 \( \frac{136835858}{1875} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -3408\) , \( 76812\bigr] \) ${y}^2={x}^{3}-{x}^{2}-3408{x}+76812$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.