Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
16384.1-a1 16384.1-a \(\Q(\sqrt{-3}) \) \( 2^{14} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.176493078$ $5.544794010$ 2.260020919 \( 128 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 1\) , \( 1\bigr] \) ${y}^2={x}^{3}+{x}^{2}+{x}+1$
16384.1-b1 16384.1-b \(\Q(\sqrt{-3}) \) \( 2^{14} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.772397005$ 1.600644157 \( 128 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 3\) , \( -5\bigr] \) ${y}^2={x}^{3}+{x}^{2}+3{x}-5$
16384.1-g1 16384.1-g \(\Q(\sqrt{-3}) \) \( 2^{14} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.772397005$ 1.600644157 \( 128 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 3 a - 3\) , \( 5\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(3a-3\right){x}+5$
16384.1-h1 16384.1-h \(\Q(\sqrt{-3}) \) \( 2^{14} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.544794010$ 3.201288314 \( 128 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -a\) , \( -1\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}-a{x}-1$
147456.1-c1 147456.1-c \(\Q(\sqrt{-3}) \) \( 2^{14} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.600644157$ 1.848264670 \( 128 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 9 a\) , \( -30 a + 15\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+9a{x}-30a+15$
147456.1-d1 147456.1-d \(\Q(\sqrt{-3}) \) \( 2^{14} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.669035392$ $3.201288314$ 4.946217913 \( 128 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 3 a\) , \( -6 a + 3\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+3a{x}-6a+3$
147456.1-bs1 147456.1-bs \(\Q(\sqrt{-3}) \) \( 2^{14} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.600644157$ 1.848264670 \( 128 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -7 a + 8\) , \( 38 a - 23\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-7a+8\right){x}+38a-23$
147456.1-bt1 147456.1-bt \(\Q(\sqrt{-3}) \) \( 2^{14} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.669035392$ $3.201288314$ 4.946217913 \( 128 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 3 a\) , \( 6 a - 3\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+3a{x}+6a-3$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.