Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
16384.1-a2
16384.1-a
$2$
$2$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
16384.1
\( 2^{14} \)
\( 2^{26} \)
$1.75107$
$(2)$
$2$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
✓
$2$
2B
$1$
\( 2^{2} \)
$0.176493078$
$2.772397005$
2.260020919
\( 10976 \)
\( \bigl[0\) , \( 1\) , \( 0\) , \( -9\) , \( 7\bigr] \)
${y}^2={x}^{3}+{x}^{2}-9{x}+7$
16384.1-b2
16384.1-b
$2$
$2$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
16384.1
\( 2^{14} \)
\( 2^{14} \)
$1.75107$
$(2)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
✓
$2$
2B
$1$
\( 1 \)
$1$
$5.544794010$
1.600644157
\( 10976 \)
\( \bigl[0\) , \( 1\) , \( 0\) , \( -2\) , \( -2\bigr] \)
${y}^2={x}^{3}+{x}^{2}-2{x}-2$
16384.1-g2
16384.1-g
$2$
$2$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
16384.1
\( 2^{14} \)
\( 2^{14} \)
$1.75107$
$(2)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
✓
$2$
2B
$1$
\( 1 \)
$1$
$5.544794010$
1.600644157
\( 10976 \)
\( \bigl[0\) , \( a\) , \( 0\) , \( -2 a + 2\) , \( 2\bigr] \)
${y}^2={x}^{3}+a{x}^{2}+\left(-2a+2\right){x}+2$
16384.1-h2
16384.1-h
$2$
$2$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
16384.1
\( 2^{14} \)
\( 2^{26} \)
$1.75107$
$(2)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
✓
$2$
2B
$1$
\( 2^{2} \)
$1$
$2.772397005$
3.201288314
\( 10976 \)
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 9 a\) , \( -7\bigr] \)
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+9a{x}-7$
147456.1-c2
147456.1-c
$2$
$2$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
147456.1
\( 2^{14} \cdot 3^{2} \)
\( 2^{14} \cdot 3^{6} \)
$3.03295$
$(-2a+1), (2)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2$
2B
$1$
\( 2 \)
$1$
$3.201288314$
1.848264670
\( 10976 \)
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( -6 a\) , \( -12 a + 6\bigr] \)
${y}^2={x}^{3}+\left(a+1\right){x}^{2}-6a{x}-12a+6$
147456.1-d2
147456.1-d
$2$
$2$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
147456.1
\( 2^{14} \cdot 3^{2} \)
\( 2^{26} \cdot 3^{6} \)
$3.03295$
$(-2a+1), (2)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2$
2B
$1$
\( 2^{2} \)
$1.338070784$
$1.600644157$
4.946217913
\( 10976 \)
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -27 a\) , \( -42 a + 21\bigr] \)
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}-27a{x}-42a+21$
147456.1-bs2
147456.1-bs
$2$
$2$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
147456.1
\( 2^{14} \cdot 3^{2} \)
\( 2^{14} \cdot 3^{6} \)
$3.03295$
$(-2a+1), (2)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2$
2B
$1$
\( 2 \)
$1$
$3.201288314$
1.848264670
\( 10976 \)
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 8 a - 7\) , \( 5 a + 1\bigr] \)
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(8a-7\right){x}+5a+1$
147456.1-bt2
147456.1-bt
$2$
$2$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
147456.1
\( 2^{14} \cdot 3^{2} \)
\( 2^{26} \cdot 3^{6} \)
$3.03295$
$(-2a+1), (2)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2$
2B
$1$
\( 2^{2} \)
$1.338070784$
$1.600644157$
4.946217913
\( 10976 \)
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( -27 a\) , \( 42 a - 21\bigr] \)
${y}^2={x}^{3}+\left(a+1\right){x}^{2}-27a{x}+42a-21$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.