Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
16384.1-a2 16384.1-a \(\Q(\sqrt{-3}) \) \( 2^{14} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.176493078$ $2.772397005$ 2.260020919 \( 10976 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -9\) , \( 7\bigr] \) ${y}^2={x}^{3}+{x}^{2}-9{x}+7$
16384.1-b2 16384.1-b \(\Q(\sqrt{-3}) \) \( 2^{14} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.544794010$ 1.600644157 \( 10976 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -2\) , \( -2\bigr] \) ${y}^2={x}^{3}+{x}^{2}-2{x}-2$
16384.1-g2 16384.1-g \(\Q(\sqrt{-3}) \) \( 2^{14} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.544794010$ 1.600644157 \( 10976 \) \( \bigl[0\) , \( a\) , \( 0\) , \( -2 a + 2\) , \( 2\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-2a+2\right){x}+2$
16384.1-h2 16384.1-h \(\Q(\sqrt{-3}) \) \( 2^{14} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.772397005$ 3.201288314 \( 10976 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 9 a\) , \( -7\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+9a{x}-7$
147456.1-c2 147456.1-c \(\Q(\sqrt{-3}) \) \( 2^{14} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.201288314$ 1.848264670 \( 10976 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -6 a\) , \( -12 a + 6\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}-6a{x}-12a+6$
147456.1-d2 147456.1-d \(\Q(\sqrt{-3}) \) \( 2^{14} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.338070784$ $1.600644157$ 4.946217913 \( 10976 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -27 a\) , \( -42 a + 21\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}-27a{x}-42a+21$
147456.1-bs2 147456.1-bs \(\Q(\sqrt{-3}) \) \( 2^{14} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.201288314$ 1.848264670 \( 10976 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 8 a - 7\) , \( 5 a + 1\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(8a-7\right){x}+5a+1$
147456.1-bt2 147456.1-bt \(\Q(\sqrt{-3}) \) \( 2^{14} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.338070784$ $1.600644157$ 4.946217913 \( 10976 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -27 a\) , \( 42 a - 21\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}-27a{x}+42a-21$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.