Learn more

Refine search


Results (10 matches)

  Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
147.2-a4 147.2-a \(\Q(\sqrt{-3}) \) \( 3 \cdot 7^{2} \) $0$ $\Z/8\Z$ $1$ $6.896615437$ 0.497720347 \( \frac{103823}{63} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}$
3087.2-a4 3087.2-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{3} \) $0$ $\Z/2\Z$ $1$ $1.504964870$ 1.737783746 \( \frac{103823}{63} \) \( \bigl[1\) , \( a\) , \( 0\) , \( 24 a - 15\) , \( 0\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(24a-15\right){x}$
3087.3-a4 3087.3-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{3} \) $0$ $\Z/2\Z$ $1$ $1.504964870$ 1.737783746 \( \frac{103823}{63} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -24 a + 9\) , \( 0\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-24a+9\right){x}$
7203.3-a4 7203.3-a \(\Q(\sqrt{-3}) \) \( 3 \cdot 7^{4} \) $1$ $\Z/4\Z$ $0.329813602$ $0.985230776$ 1.500845174 \( \frac{103823}{63} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 48\) , \( 48\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+48{x}+48$
24843.4-b3 24843.4-b \(\Q(\sqrt{-3}) \) \( 3 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $1.912776968$ 2.208684594 \( \frac{103823}{63} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -15 a + 7\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-15a+7\right){x}$
24843.6-b3 24843.6-b \(\Q(\sqrt{-3}) \) \( 3 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $1.912776968$ 2.208684594 \( \frac{103823}{63} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -7 a + 15\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-7a+15\right){x}$
37632.2-f3 37632.2-f \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.373149604$ $1.724153859$ 2.971586411 \( \frac{103823}{63} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 16\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}+16{x}$
91875.2-c3 91875.2-c \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{4} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.472574897$ $1.379323087$ 3.010689818 \( \frac{103823}{63} \) \( \bigl[a + 1\) , \( a\) , \( 1\) , \( 25 a - 26\) , \( -25\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+a{x}^{2}+\left(25a-26\right){x}-25$
112896.2-q3 112896.2-q \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $0.995440694$ 2.298871812 \( \frac{103823}{63} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( a - 47\) , \( 47 a\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(a-47\right){x}+47a$
112896.2-y3 112896.2-y \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $0.995440694$ 2.298871812 \( \frac{103823}{63} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a - 47\) , \( -47 a\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(a-47\right){x}-47a$
  Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.