Learn more

Refine search


Results (1-50 of 496 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
49.1-CMa1 49.1-CMa \(\Q(\sqrt{-3}) \) \( 7^{2} \) 0 $\Z/7\Z$ $-3$ $\mathrm{U}(1)$ $1$ $10.15449534$ 0.239293902 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( a\) , \( a\) , \( 0\bigr] \) ${y}^2+a{y}={x}^{3}+\left(a+1\right){x}^{2}+a{x}$
49.3-CMa1 49.3-CMa \(\Q(\sqrt{-3}) \) \( 7^{2} \) 0 $\Z/7\Z$ $-3$ $\mathrm{U}(1)$ $1$ $10.15449534$ 0.239293902 \( 0 \) \( \bigl[0\) , \( -a - 1\) , \( a + 1\) , \( a\) , \( -a\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+a{x}-a$
81.1-CMa1 81.1-CMa \(\Q(\sqrt{-3}) \) \( 3^{4} \) 0 $\Z/3\Z\oplus\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $8.108628264$ 0.346779163 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+{y}={x}^{3}$
144.1-CMa1 144.1-CMa \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/6\Z$ $-3$ $\mathrm{U}(1)$ $1$ $5.108115717$ 0.491528664 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 1\bigr] \) ${y}^2={x}^{3}+1$
256.1-CMb1 256.1-CMb \(\Q(\sqrt{-3}) \) \( 2^{8} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-3$ $\mathrm{U}(1)$ $1$ $8.847515954$ 0.638514464 \( 0 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( a\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+a{x}$
256.1-CMa1 256.1-CMa \(\Q(\sqrt{-3}) \) \( 2^{8} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-3$ $\mathrm{U}(1)$ $1$ $8.847515954$ 0.638514464 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+a{x}$
441.1-CMa1 441.1-CMa \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \) 0 $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $2.215892550$ 0.852897440 \( 0 \) \( \bigl[0\) , \( 0\) , \( a\) , \( 0\) , \( -10 a + 14\bigr] \) ${y}^2+a{y}={x}^{3}-10a+14$
441.3-CMa1 441.3-CMa \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \) 0 $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $2.215892550$ 0.852897440 \( 0 \) \( \bigl[0\) , \( 0\) , \( a + 1\) , \( 0\) , \( 9 a + 4\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+9a+4$
729.1-CMb1 729.1-CMb \(\Q(\sqrt{-3}) \) \( 3^{6} \) 0 $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $8.108628264$ 1.040337491 \( 0 \) \( \bigl[0\) , \( 0\) , \( a + 1\) , \( 0\) , \( -a\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-a$
729.1-CMa1 729.1-CMa \(\Q(\sqrt{-3}) \) \( 3^{6} \) 0 $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $8.108628264$ 1.040337491 \( 0 \) \( \bigl[0\) , \( 0\) , \( a\) , \( 0\) , \( 0\bigr] \) ${y}^2+a{y}={x}^{3}$
784.1-CMb1 784.1-CMb \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 7^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $1.101251020$ 1.271615146 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a\) , \( 94 a - 105\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+a{x}+94a-105$
784.1-CMa1 784.1-CMa \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-3$ $\mathrm{U}(1)$ $1$ $3.344046705$ 0.965343132 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a\) , \( -2 a + 4\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+a{x}-2a+4$
784.3-CMb1 784.3-CMb \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 7^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $1.101251020$ 1.271615146 \( 0 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( a\) , \( -94 a - 11\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+a{x}-94a-11$
784.3-CMa1 784.3-CMa \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-3$ $\mathrm{U}(1)$ $1$ $3.344046705$ 0.965343132 \( 0 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( a\) , \( 2 a + 2\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+a{x}+2a+2$
961.1-CMa1 961.1-CMa \(\Q(\sqrt{-3}) \) \( 31^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $0.802983472$ 0.927205448 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( a\) , \( 287 a - 76\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+a{x}+287a-76$
961.3-CMa1 961.3-CMa \(\Q(\sqrt{-3}) \) \( 31^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $0.802983472$ 0.927205448 \( 0 \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( a\) , \( -287 a + 211\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+a{x}-287a+211$
1296.1-CMa1 1296.1-CMa \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 3^{4} \) 0 $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $3.217911259$ 1.238574621 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 4\bigr] \) ${y}^2={x}^{3}+4$
1521.1-CMb1 1521.1-CMb \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $0.956447781$ 1.104410767 \( 0 \) \( \bigl[0\) , \( 0\) , \( a\) , \( 0\) , \( -136 a + 165\bigr] \) ${y}^2+a{y}={x}^{3}-136a+165$
1521.1-CMa1 1521.1-CMa \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 13^{2} \) 0 $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $3.448521516$ 1.327336550 \( 0 \) \( \bigl[0\) , \( 0\) , \( a\) , \( 0\) , \( -4 a + 2\bigr] \) ${y}^2+a{y}={x}^{3}-4a+2$
1521.3-CMb1 1521.3-CMb \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $0.956447781$ 1.104410767 \( 0 \) \( \bigl[0\) , \( 0\) , \( a + 1\) , \( 0\) , \( 135 a + 29\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+135a+29$
1521.3-CMa1 1521.3-CMa \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 13^{2} \) 0 $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $3.448521516$ 1.327336550 \( 0 \) \( \bigl[0\) , \( 0\) , \( a + 1\) , \( 0\) , \( 3 a - 2\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+3a-2$
1849.1-CMa1 1849.1-CMa \(\Q(\sqrt{-3}) \) \( 43^{2} \) $2$ $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $0.022264396$ $7.503489439$ 0.771620158 \( 0 \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( a\) , \( 0\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+a{x}$
1849.3-CMa1 1849.3-CMa \(\Q(\sqrt{-3}) \) \( 43^{2} \) $2$ $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $0.022264396$ $7.503489439$ 0.771620158 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( a\) , \( 0\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+a{x}$
2304.1-CMa1 2304.1-CMa \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-3$ $\mathrm{U}(1)$ $1$ $5.108115717$ 1.474585992 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -1\bigr] \) ${y}^2={x}^{3}-1$
2401.3-CMd1 2401.3-CMd \(\Q(\sqrt{-3}) \) \( 7^{4} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $1.450642192$ 1.675057320 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( a\) , \( -27 a + 50\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+a{x}-27a+50$
2401.3-CMc1 2401.3-CMc \(\Q(\sqrt{-3}) \) \( 7^{4} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $1.450642192$ 1.675057320 \( 0 \) \( \bigl[0\) , \( -a - 1\) , \( a\) , \( a\) , \( -10 a + 48\bigr] \) ${y}^2+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+a{x}-10a+48$
2401.3-CMb1 2401.3-CMb \(\Q(\sqrt{-3}) \) \( 7^{4} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $1.450642192$ 1.675057320 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( a + 1\) , \( a\) , \( 9 a + 38\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+a{x}+9a+38$
2401.3-CMa1 2401.3-CMa \(\Q(\sqrt{-3}) \) \( 7^{4} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $1.450642192$ 1.675057320 \( 0 \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( a\) , \( 27 a + 23\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+a{x}+27a+23$
3969.1-CMc1 3969.1-CMc \(\Q(\sqrt{-3}) \) \( 3^{4} \cdot 7^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $0.924992894$ 1.068089793 \( 0 \) \( \bigl[0\) , \( 0\) , \( a + 1\) , \( 0\) , \( -159 a + 177\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-159a+177$
3969.1-CMb1 3969.1-CMb \(\Q(\sqrt{-3}) \) \( 3^{4} \cdot 7^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $1.769447752$ 2.043182272 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 15 a - 28\bigr] \) ${y}^2+{y}={x}^{3}+15a-28$
3969.1-CMa1 3969.1-CMa \(\Q(\sqrt{-3}) \) \( 3^{4} \cdot 7^{2} \) 0 $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $4.238849958$ 1.631534109 \( 0 \) \( \bigl[0\) , \( 0\) , \( a + 1\) , \( 0\) , \( -2\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-2$
3969.3-CMc1 3969.3-CMc \(\Q(\sqrt{-3}) \) \( 3^{4} \cdot 7^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $0.924992894$ 1.068089793 \( 0 \) \( \bigl[0\) , \( 0\) , \( a\) , \( 0\) , \( 158 a + 19\bigr] \) ${y}^2+a{y}={x}^{3}+158a+19$
3969.3-CMb1 3969.3-CMb \(\Q(\sqrt{-3}) \) \( 3^{4} \cdot 7^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $1.769447752$ 2.043182272 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( -15 a - 13\bigr] \) ${y}^2+{y}={x}^{3}-15a-13$
3969.3-CMa1 3969.3-CMa \(\Q(\sqrt{-3}) \) \( 3^{4} \cdot 7^{2} \) 0 $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $4.238849958$ 1.631534109 \( 0 \) \( \bigl[0\) , \( 0\) , \( a\) , \( 0\) , \( -a - 1\bigr] \) ${y}^2+a{y}={x}^{3}-a-1$
4096.1-CMb1 4096.1-CMb \(\Q(\sqrt{-3}) \) \( 2^{12} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-3$ $\mathrm{U}(1)$ $1$ $4.423757977$ 1.277028929 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a\) , \( 2 a - 1\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+a{x}+2a-1$
4096.1-CMa1 4096.1-CMa \(\Q(\sqrt{-3}) \) \( 2^{12} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-3$ $\mathrm{U}(1)$ $1$ $4.423757977$ 1.277028929 \( 0 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( a\) , \( -2 a + 1\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+a{x}-2a+1$
4489.1-CMa1 4489.1-CMa \(\Q(\sqrt{-3}) \) \( 67^{2} \) $0 \le r \le 2$ $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $0.422453600$ 1.951229600 \( 0 \) \( \bigl[0\) , \( -a - 1\) , \( a + 1\) , \( a\) , \( 2040 a - 987\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+a{x}+2040a-987$
4489.3-CMa1 4489.3-CMa \(\Q(\sqrt{-3}) \) \( 67^{2} \) $0 \le r \le 2$ $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $0.422453600$ 1.951229600 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( a\) , \( a\) , \( -2041 a + 1054\bigr] \) ${y}^2+a{y}={x}^{3}+\left(a+1\right){x}^{2}+a{x}-2041a+1054$
5625.1-CMb1 5625.1-CMb \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{4} \) 0 $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $0.948390915$ 1.460143333 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 156\bigr] \) ${y}^2+{y}={x}^{3}+156$
5625.1-CMa1 5625.1-CMa \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{4} \) $2$ $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $0.017703945$ $4.741954575$ 1.551017859 \( 0 \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 1\bigr] \) ${y}^2+{y}={x}^{3}+1$
5776.1-CMc1 5776.1-CMc \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 19^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $0.760664859$ 2.635020368 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a\) , \( -349 a + 190\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+a{x}-349a+190$
5776.1-CMb1 5776.1-CMb \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 19^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-3$ $\mathrm{U}(1)$ $1$ $2.029759365$ 1.757823174 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a\) , \( -6 a - 12\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+a{x}-6a-12$
5776.1-CMa1 5776.1-CMa \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $0.018683933$ $5.416213237$ 1.402215272 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a\) , \( a - 1\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+a{x}+a-1$
5776.3-CMc1 5776.3-CMc \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 19^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $0.760664859$ 2.635020368 \( 0 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( a\) , \( 349 a - 159\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+a{x}+349a-159$
5776.3-CMb1 5776.3-CMb \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 19^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-3$ $\mathrm{U}(1)$ $1$ $2.029759365$ 1.757823174 \( 0 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( a\) , \( 6 a - 18\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+a{x}+6a-18$
5776.3-CMa1 5776.3-CMa \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $0.018683933$ $5.416213237$ 1.402215272 \( 0 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( a\) , \( -a\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+a{x}-a$
6241.1-CMa1 6241.1-CMa \(\Q(\sqrt{-3}) \) \( 79^{2} \) $2$ $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $0.043046721$ $6.780111505$ 1.348050840 \( 0 \) \( \bigl[0\) , \( a + 1\) , \( a + 1\) , \( a\) , \( -a\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+a{x}-a$
6241.3-CMa1 6241.3-CMa \(\Q(\sqrt{-3}) \) \( 79^{2} \) $2$ $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $0.043046721$ $6.780111505$ 1.348050840 \( 0 \) \( \bigl[0\) , \( -a - 1\) , \( a\) , \( a\) , \( 0\bigr] \) ${y}^2+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+a{x}$
6561.1-CMf1 6561.1-CMf \(\Q(\sqrt{-3}) \) \( 3^{8} \) 0 $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $3.898221876$ 1.500426299 \( 0 \) \( \bigl[0\) , \( 0\) , \( a + 1\) , \( 0\) , \( -3 a\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-3a$
6561.1-CMe1 6561.1-CMe \(\Q(\sqrt{-3}) \) \( 3^{8} \) 0 $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $3.898221876$ 1.500426299 \( 0 \) \( \bigl[0\) , \( 0\) , \( a\) , \( 0\) , \( 2 a - 2\bigr] \) ${y}^2+a{y}={x}^{3}+2a-2$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.