Learn more

Refine search


Results (displaying both matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
61731.2-g1 61731.2-g \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.384520053$ $0.712333856$ 4.555249792 \( -\frac{61536}{361} a + \frac{21201}{361} \) \( \bigl[1\) , \( a\) , \( 1\) , \( 42 a - 44\) , \( -343 a - 51\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(42a-44\right){x}-343a-51$
61731.2-h1 61731.2-h \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.792667560$ 4.139988395 \( -\frac{61536}{361} a + \frac{21201}{361} \) \( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( -7 a - 1\) , \( 15 a + 9\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-7a-1\right){x}+15a+9$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.