Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
147.2-a3 147.2-a \(\Q(\sqrt{-3}) \) \( 3 \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.862076929$ 0.497720347 \( -\frac{4354703137}{17294403} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( -34\) , \( -217\bigr] \) ${y}^2+{x}{y}={x}^{3}-34{x}-217$
3087.2-a3 3087.2-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.188120608$ 1.737783746 \( -\frac{4354703137}{17294403} \) \( \bigl[1\) , \( a\) , \( 0\) , \( -816 a + 510\) , \( -13020 a + 24087\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-816a+510\right){x}-13020a+24087$
3087.3-a3 3087.3-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.188120608$ 1.737783746 \( -\frac{4354703137}{17294403} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 816 a - 306\) , \( 13020 a + 11067\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(816a-306\right){x}+13020a+11067$
7203.3-a3 7203.3-a \(\Q(\sqrt{-3}) \) \( 3 \cdot 7^{4} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.638508823$ $0.123153847$ 1.500845174 \( -\frac{4354703137}{17294403} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -1667\) , \( 72764\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-1667{x}+72764$
24843.4-b2 24843.4-b \(\Q(\sqrt{-3}) \) \( 3 \cdot 7^{2} \cdot 13^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.239097121$ 2.208684594 \( -\frac{4354703137}{17294403} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 510 a - 238\) , \( -7812 a - 3689\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(510a-238\right){x}-7812a-3689$
24843.6-b2 24843.6-b \(\Q(\sqrt{-3}) \) \( 3 \cdot 7^{2} \cdot 13^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.239097121$ 2.208684594 \( -\frac{4354703137}{17294403} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 238 a - 510\) , \( 7812 a - 11501\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(238a-510\right){x}+7812a-11501$
37632.2-f2 37632.2-f \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $0.746299208$ $0.215519232$ 2.971586411 \( -\frac{4354703137}{17294403} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -544\) , \( 13888\bigr] \) ${y}^2={x}^{3}-{x}^{2}-544{x}+13888$
91875.2-c2 91875.2-c \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{4} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.236287448$ $0.172415385$ 3.010689818 \( -\frac{4354703137}{17294403} \) \( \bigl[a + 1\) , \( a\) , \( 1\) , \( -850 a + 849\) , \( -26275\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-850a+849\right){x}-26275$
112896.2-q2 112896.2-q \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.124430086$ 2.298871812 \( -\frac{4354703137}{17294403} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( a + 1633\) , \( 81695 a - 41664\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(a+1633\right){x}+81695a-41664$
112896.2-y2 112896.2-y \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.124430086$ 2.298871812 \( -\frac{4354703137}{17294403} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a + 1633\) , \( -81695 a + 41664\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(a+1633\right){x}-81695a+41664$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.