Learn more

Refine search


Results (9 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
300.1-a1 300.1-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \) 0 $\Z/12\Z$ $\mathrm{SU}(2)$ $1$ $1.294290140$ 0.747258760 \( -\frac{273359449}{1536000} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -14\) , \( -64\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-14{x}-64$
7500.1-b1 7500.1-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{4} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.258858028$ 1.793421026 \( -\frac{273359449}{1536000} \) \( \bigl[a\) , \( a - 1\) , \( 1\) , \( 337 a\) , \( -7969\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+337a{x}-7969$
19200.1-e1 19200.1-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.323572535$ 2.241776282 \( -\frac{273359449}{1536000} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -216\) , \( 4080\bigr] \) ${y}^2={x}^{3}-{x}^{2}-216{x}+4080$
44100.1-b1 44100.1-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.282437263$ 1.956782763 \( -\frac{273359449}{1536000} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 205 a + 121\) , \( -3500 a + 6873\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(205a+121\right){x}-3500a+6873$
44100.3-b1 44100.3-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.282437263$ 1.956782763 \( -\frac{273359449}{1536000} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 1\) , \( -122 a - 203\) , \( 3825 a + 3251\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-122a-203\right){x}+3825a+3251$
50700.1-b1 50700.1-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.643233601$ $0.358971497$ 2.724511424 \( -\frac{273359449}{1536000} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 202 a - 95\) , \( -2295 a - 1084\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(202a-95\right){x}-2295a-1084$
50700.3-b1 50700.3-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.643233601$ $0.358971497$ 2.724511424 \( -\frac{273359449}{1536000} \) \( \bigl[a\) , \( -a\) , \( 1\) , \( -203 a + 108\) , \( 2295 a - 3379\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-203a+108\right){x}+2295a-3379$
57600.1-a1 57600.1-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.281418887$ $0.186814690$ 3.694265501 \( -\frac{273359449}{1536000} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -648 a\) , \( 24480 a - 12240\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}-648a{x}+24480a-12240$
57600.1-p1 57600.1-p \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.281418887$ $0.186814690$ 3.694265501 \( -\frac{273359449}{1536000} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -648 a\) , \( -24480 a + 12240\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}-648a{x}-24480a+12240$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.