Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
7203.3-b1 7203.3-b \(\Q(\sqrt{-3}) \) \( 3 \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.991510447$ $0.416956105$ 1.909488257 \( -\frac{1713910976512}{1594323} \) \( \bigl[0\) , \( a\) , \( 1\) , \( -912 a + 912\) , \( 10919\bigr] \) ${y}^2+{y}={x}^{3}+a{x}^{2}+\left(-912a+912\right){x}+10919$
7203.3-c1 7203.3-c \(\Q(\sqrt{-3}) \) \( 3 \cdot 7^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.059565157$ 1.788277919 \( -\frac{1713910976512}{1594323} \) \( \bigl[0\) , \( a - 1\) , \( 1\) , \( 44704 a\) , \( -3655907\bigr] \) ${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+44704a{x}-3655907$
21609.3-b1 21609.3-b \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.185208367$ $0.090987281$ 2.988518917 \( -\frac{1713910976512}{1594323} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( -8210 a - 13685\) , \( -646946 a - 543199\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-8210a-13685\right){x}-646946a-543199$
21609.3-c1 21609.3-c \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.185208367$ $0.090987281$ 2.988518917 \( -\frac{1713910976512}{1594323} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 13686 a + 8211\) , \( 625050 a - 1176460\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(13686a+8211\right){x}+625050a-1176460$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.