Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
2214.12-d2
2214.12-d
$4$
$4$
\(\Q(\sqrt{-23}) \)
$2$
$[0, 1]$
2214.12
\( 2 \cdot 3^{3} \cdot 41 \)
\( 2^{13} \cdot 3^{14} \cdot 41 \)
$2.93966$
$(2,a+1), (3,a), (3,a+2), (41,a+25)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2Cs
$1$
\( 2^{3} \)
$1$
$2.640298093$
2.202160839
\( -\frac{60343}{2214} a + \frac{5886962}{3321} \)
\( \bigl[a\) , \( a\) , \( a\) , \( 6 a + 18\) , \( 2 a - 17\bigr] \)
${y}^2+a{x}{y}+a{y}={x}^3+a{x}^2+\left(6a+18\right){x}+2a-17$
2214.14-a2
2214.14-a
$4$
$4$
\(\Q(\sqrt{-23}) \)
$2$
$[0, 1]$
2214.14
\( 2 \cdot 3^{3} \cdot 41 \)
\( 2 \cdot 3^{14} \cdot 41 \)
$2.93966$
$(2,a+1), (3,a), (3,a+2), (41,a+25)$
$2$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2Cs
$1$
\( 2^{3} \)
$0.319957630$
$2.640298093$
2.818392654
\( -\frac{60343}{2214} a + \frac{5886962}{3321} \)
\( \bigl[1\) , \( a + 1\) , \( 1\) , \( 4 a - 3\) , \( 2 a - 6\bigr] \)
${y}^2+{x}{y}+{y}={x}^3+\left(a+1\right){x}^2+\left(4a-3\right){x}+2a-6$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.