Learn more

Refine search


Results (5 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
539.1-b3 539.1-b \(\Q(\sqrt{-11}) \) \( 7^{2} \cdot 11 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.200443024$ 1.933947068 \( \frac{9463555063808}{115539436859} \) \( \bigl[0\) , \( 1\) , \( 1\) , \( 441\) , \( -15815\bigr] \) ${y}^2+{y}={x}^{3}+{x}^{2}+441{x}-15815$
13475.1-b3 13475.1-b \(\Q(\sqrt{-11}) \) \( 5^{2} \cdot 7^{2} \cdot 11 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.089640845$ 1.945996699 \( \frac{9463555063808}{115539436859} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 1323 a - 882\) , \( -63259 a + 173962\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(1323a-882\right){x}-63259a+173962$
13475.3-b3 13475.3-b \(\Q(\sqrt{-11}) \) \( 5^{2} \cdot 7^{2} \cdot 11 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.089640845$ 1.945996699 \( \frac{9463555063808}{115539436859} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( -1321 a + 440\) , \( 64581 a + 110263\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1321a+440\right){x}+64581a+110263$
26411.1-b3 26411.1-b \(\Q(\sqrt{-11}) \) \( 7^{4} \cdot 11 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $3.428115269$ $0.028634717$ 0.947113353 \( \frac{9463555063808}{115539436859} \) \( \bigl[0\) , \( -1\) , \( 1\) , \( 21593\) , \( 5467657\bigr] \) ${y}^2+{y}={x}^{3}-{x}^{2}+21593{x}+5467657$
43659.3-a3 43659.3-a \(\Q(\sqrt{-11}) \) \( 3^{4} \cdot 7^{2} \cdot 11 \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $6.706046397$ $0.066814341$ 2.161523128 \( \frac{9463555063808}{115539436859} \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 3966\) , \( 430965\bigr] \) ${y}^2+{y}={x}^{3}+3966{x}+430965$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.