| Label |
Base field |
Conductor norm |
Conductor label |
Isogeny class |
Weierstrass coefficients |
| 27.2-a4 |
\(\Q(\sqrt{-11}) \)
|
27 |
27.2 |
27.2-a |
\( \bigl[1\) , \( -a - 1\) , \( a\) , \( a\) , \( -a + 3\bigr] \) |
| 27.3-a4 |
\(\Q(\sqrt{-11}) \)
|
27 |
27.3 |
27.3-a |
\( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( a - 3\) , \( -3\bigr] \) |
| 675.4-c4 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.4 |
675.4-c |
\( \bigl[a\) , \( 0\) , \( a + 1\) , \( 2 a - 6\) , \( 4 a - 14\bigr] \) |
| 675.6-a4 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.6 |
675.6-a |
\( \bigl[a + 1\) , \( -a - 1\) , \( 1\) , \( -4 a + 7\) , \( -4 a - 15\bigr] \) |
| 675.7-a4 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.7 |
675.7-a |
\( \bigl[1\) , \( a + 1\) , \( 1\) , \( -a - 7\) , \( -12 a - 4\bigr] \) |
| 675.9-c4 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.9 |
675.9-c |
\( \bigl[a\) , \( a + 1\) , \( a + 1\) , \( a + 7\) , \( -4 a + 14\bigr] \) |
| 1089.2-c4 |
\(\Q(\sqrt{-11}) \)
|
1089 |
1089.2 |
1089.2-c |
\( \bigl[a\) , \( -a + 1\) , \( 1\) , \( 3 a - 1\) , \( -5 a - 2\bigr] \) |
| 2304.2-d4 |
\(\Q(\sqrt{-11}) \)
|
2304 |
2304.2 |
2304.2-d |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -4 a\) , \( -4 a + 12\bigr] \) |
| 2304.2-h4 |
\(\Q(\sqrt{-11}) \)
|
2304 |
2304.2 |
2304.2-h |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( -4 a\) , \( 4 a - 12\bigr] \) |
| 4761.4-b4 |
\(\Q(\sqrt{-11}) \)
|
4761 |
4761.4 |
4761.4-b |
\( \bigl[1\) , \( 0\) , \( a\) , \( -7 a + 9\) , \( -7 a - 24\bigr] \) |
| 4761.6-b4 |
\(\Q(\sqrt{-11}) \)
|
4761 |
4761.6 |
4761.6-b |
\( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( -6 a - 7\) , \( -21 a + 8\bigr] \) |
| 6912.2-n4 |
\(\Q(\sqrt{-11}) \)
|
6912 |
6912.2 |
6912.2-n |
\( \bigl[0\) , \( a\) , \( 0\) , \( 11 a + 12\) , \( 9 a - 103\bigr] \) |
| 6912.3-r4 |
\(\Q(\sqrt{-11}) \)
|
6912 |
6912.3 |
6912.3-r |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 14 a - 17\) , \( -49 a + 51\bigr] \) |
| 8649.4-c4 |
\(\Q(\sqrt{-11}) \)
|
8649 |
8649.4 |
8649.4-c |
\( \bigl[1\) , \( a\) , \( 1\) , \( 8 a - 16\) , \( -24 a + 32\bigr] \) |
| 8649.6-c4 |
\(\Q(\sqrt{-11}) \)
|
8649 |
8649.6 |
8649.6-c |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 4 a + 13\) , \( 14 a - 45\bigr] \) |
| 9801.3-l4 |
\(\Q(\sqrt{-11}) \)
|
9801 |
9801.3 |
9801.3-l |
\( \bigl[a\) , \( -a\) , \( a\) , \( 31 a - 3\) , \( 109 a + 141\bigr] \) |
| 16875.13-bc3 |
\(\Q(\sqrt{-11}) \)
|
16875 |
16875.13 |
16875.13-bc |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 22 a - 26\) , \( 103 a - 73\bigr] \) |
| 16875.8-ba3 |
\(\Q(\sqrt{-11}) \)
|
16875 |
16875.8 |
16875.8-ba |
\( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( 16 a + 19\) , \( 5 a + 159\bigr] \) |
| 19881.4-a3 |
\(\Q(\sqrt{-11}) \)
|
19881 |
19881.4 |
19881.4-a |
\( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( -5 a - 19\) , \( -34 a - 24\bigr] \) |
| 19881.6-b3 |
\(\Q(\sqrt{-11}) \)
|
19881 |
19881.6 |
19881.6-b |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( -10 a + 25\) , \( -36 a - 63\bigr] \) |
| 20736.3-bi3 |
\(\Q(\sqrt{-11}) \)
|
20736 |
20736.3 |
20736.3-bi |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -45 a + 6\) , \( 188 a - 454\bigr] \) |
| 20736.3-bl3 |
\(\Q(\sqrt{-11}) \)
|
20736 |
20736.3 |
20736.3-bl |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -45 a + 6\) , \( -188 a + 454\bigr] \) |
| 27225.4-f3 |
\(\Q(\sqrt{-11}) \)
|
27225 |
27225.4 |
27225.4-f |
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( a - 32\) , \( -3 a + 104\bigr] \) |
| 27225.6-c3 |
\(\Q(\sqrt{-11}) \)
|
27225 |
27225.6 |
27225.6-c |
\( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -6 a + 30\) , \( 57 a - 18\bigr] \) |
| 31329.4-b3 |
\(\Q(\sqrt{-11}) \)
|
31329 |
31329.4 |
31329.4-b |
\( \bigl[a + 1\) , \( 0\) , \( 1\) , \( -19 a + 15\) , \( 7 a - 116\bigr] \) |
| 31329.6-b3 |
\(\Q(\sqrt{-11}) \)
|
31329 |
31329.6 |
31329.6-b |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -15 a - 12\) , \( -75 a + 61\bigr] \) |
| 36864.2-t3 |
\(\Q(\sqrt{-11}) \)
|
36864 |
36864.2 |
36864.2-t |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -19 a + 2\) , \( 68 a - 155\bigr] \) |
| 36864.2-bg3 |
\(\Q(\sqrt{-11}) \)
|
36864 |
36864.2 |
36864.2-bg |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( -19 a + 2\) , \( -68 a + 155\bigr] \) |
| 36963.4-a3 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.4 |
36963.4-a |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 15 a - 63\) , \( 21 a - 333\bigr] \) |
| 36963.6-a3 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.6 |
36963.6-a |
\( \bigl[a\) , \( 0\) , \( a\) , \( -33 a + 42\) , \( -39 a - 290\bigr] \) |
| 36963.7-a3 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.7 |
36963.7-a |
\( \bigl[a\) , \( a + 1\) , \( a\) , \( -23 a - 33\) , \( -219 a + 90\bigr] \) |
| 36963.9-a3 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.9 |
36963.9-a |
\( \bigl[1\) , \( -a\) , \( 1\) , \( a + 57\) , \( -196 a + 229\bigr] \) |
| 40401.4-a3 |
\(\Q(\sqrt{-11}) \)
|
40401 |
40401.4 |
40401.4-a |
\( \bigl[a + 1\) , \( a\) , \( 1\) , \( -10 a + 33\) , \( 103 a + 16\bigr] \) |
| 40401.6-a3 |
\(\Q(\sqrt{-11}) \)
|
40401 |
40401.6 |
40401.6-a |
\( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( -2 a - 36\) , \( 52 a + 99\bigr] \) |
| 42849.7-c3 |
\(\Q(\sqrt{-11}) \)
|
42849 |
42849.7 |
42849.7-c |
\( \bigl[1\) , \( -1\) , \( a\) , \( -59 a + 81\) , \( 182 a + 669\bigr] \) |
| 42849.9-d3 |
\(\Q(\sqrt{-11}) \)
|
42849 |
42849.9 |
42849.9-d |
\( \bigl[a + 1\) , \( -1\) , \( 1\) , \( -41 a - 68\) , \( 478 a - 14\bigr] \) |
| 45369.4-a3 |
\(\Q(\sqrt{-11}) \)
|
45369 |
45369.4 |
45369.4-a |
\( \bigl[a + 1\) , \( 1\) , \( 1\) , \( 19 a + 10\) , \( 42 a + 128\bigr] \) |
| 45369.6-a3 |
\(\Q(\sqrt{-11}) \)
|
45369 |
45369.6 |
45369.6-a |
\( \bigl[1\) , \( 1\) , \( a\) , \( 22 a - 16\) , \( 107 a - 26\bigr] \) |