Learn more

Refine search


Results (38 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
27.2-a8 27.2-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.144817200$ 0.690350747 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -97 a + 240\) , \( -381 a - 1012\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-97a+240\right){x}-381a-1012$
27.3-a8 27.3-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.144817200$ 0.690350747 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[1\) , \( a + 1\) , \( a\) , \( 70 a + 186\) , \( -573 a + 1350\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(70a+186\right){x}-573a+1350$
675.4-c8 675.4-c \(\Q(\sqrt{-11}) \) \( 3^{3} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.372120110$ $0.511977816$ 2.297724390 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 623 a + 381\) , \( -767 a + 16084\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(623a+381\right){x}-767a+16084$
675.6-a8 675.6-a \(\Q(\sqrt{-11}) \) \( 3^{3} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.511977816$ 1.234936958 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -527 a - 624\) , \( 9910 a + 1568\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-527a-624\right){x}+9910a+1568$
675.7-a8 675.7-a \(\Q(\sqrt{-11}) \) \( 3^{3} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.511977816$ 1.234936958 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a\) , \( -1\) , \( 1\) , \( 628 a - 996\) , \( 9778 a - 6085\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(628a-996\right){x}+9778a-6085$
675.9-c8 675.9-c \(\Q(\sqrt{-11}) \) \( 3^{3} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.465150138$ $0.511977816$ 2.297724390 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a + 1\) , \( -a\) , \( a\) , \( -699 a + 812\) , \( 2300 a - 17944\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-699a+812\right){x}+2300a-17944$
1089.2-c8 1089.2-c \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.597861284$ 3.605239194 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( -59 a + 937\) , \( 6561 a - 1591\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-59a+937\right){x}+6561a-1591$
2304.2-d8 2304.2-d \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.845411214$ $0.495720389$ 2.527193171 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 86 a - 1365\) , \( 2183 a - 18771\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(86a-1365\right){x}+2183a-18771$
2304.2-h8 2304.2-h \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $4.227056070$ $0.495720389$ 2.527193171 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 86 a - 1365\) , \( -2183 a + 18771\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(86a-1365\right){x}-2183a+18771$
4761.4-b8 4761.4-b \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 23^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.413459386$ 2.493253908 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -651 a - 1251\) , \( 15607 a + 11805\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-651a-1251\right){x}+15607a+11805$
4761.6-b8 4761.6-b \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 23^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.413459386$ 2.493253908 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[1\) , \( 0\) , \( a + 1\) , \( 836 a - 1733\) , \( 18267 a - 20335\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(836a-1733\right){x}+18267a-20335$
6912.2-n8 6912.2-n \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.486552137$ $0.286204300$ 5.131211894 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -1534 a + 3837\) , \( 30465 a + 70178\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-1534a+3837\right){x}+30465a+70178$
6912.3-r8 6912.3-r \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3^{3} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $7.432760689$ $0.286204300$ 5.131211894 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 1109 a + 2983\) , \( 42983 a - 83742\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(1109a+2983\right){x}+42983a-83742$
8649.4-c8 8649.4-c \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 31^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.111678720$ $0.356136040$ 5.346066004 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 1141 a + 1177\) , \( 10210 a - 52692\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(1141a+1177\right){x}+10210a-52692$
8649.6-c8 8649.6-c \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 31^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.489342976$ $0.356136040$ 5.346066004 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -1338 a + 1977\) , \( -332 a + 49572\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1338a+1977\right){x}-332a+49572$
9801.3-l8 9801.3-l \(\Q(\sqrt{-11}) \) \( 3^{4} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.199287094$ 0.961397118 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -528 a + 8443\) , \( -168707 a + 36088\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-528a+8443\right){x}-168707a+36088$
16875.13-bc7 16875.13-bc \(\Q(\sqrt{-11}) \) \( 3^{3} \cdot 5^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.779983429$ $0.228963440$ 6.892315432 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[1\) , \( -a\) , \( a\) , \( 1733 a + 4661\) , \( -87881 a + 169790\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(1733a+4661\right){x}-87881a+169790$
16875.8-ba7 16875.8-ba \(\Q(\sqrt{-11}) \) \( 3^{3} \cdot 5^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.623986743$ $0.228963440$ 6.892315432 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a\) , \( 0\) , \( 1\) , \( -2398 a + 5997\) , \( -57103 a - 134970\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-2398a+5997\right){x}-57103a-134970$
19881.4-a7 19881.4-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 47^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.289233001$ 0.348828124 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 2116 a - 2773\) , \( 56522 a - 20516\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(2116a-2773\right){x}+56522a-20516$
19881.6-b7 19881.6-b \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 47^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.289233001$ 0.348828124 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a + 1\) , \( 1\) , \( 1\) , \( -1850 a - 1492\) , \( 54186 a - 6466\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+{x}^{2}+\left(-1850a-1492\right){x}+54186a-6466$
20736.3-bi7 20736.3-bi \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.165240129$ 3.188593517 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 765 a - 12279\) , \( -48196 a + 521402\bigr] \) ${y}^2={x}^{3}+\left(765a-12279\right){x}-48196a+521402$
20736.3-bl7 20736.3-bl \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.165240129$ 3.188593517 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 765 a - 12279\) , \( 48196 a - 521402\bigr] \) ${y}^2={x}^{3}+\left(765a-12279\right){x}+48196a-521402$
27225.4-f7 27225.4-f \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.844226804$ $0.267371694$ 3.668624767 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[1\) , \( a\) , \( 0\) , \( 2756 a - 1351\) , \( -49535 a - 62584\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(2756a-1351\right){x}-49535a-62584$
27225.6-c7 27225.6-c \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.568845360$ $0.267371694$ 3.668624767 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a\) , \( a - 1\) , \( a + 1\) , \( -2699 a + 413\) , \( -63112 a + 89457\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2699a+413\right){x}-63112a+89457$
31329.4-b7 31329.4-b \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 59^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.258149190$ 1.556698190 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -955 a - 4162\) , \( 37653 a + 97124\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-955a-4162\right){x}+37653a+97124$
31329.6-b7 31329.6-b \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 59^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.258149190$ 1.556698190 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a\) , \( -a + 1\) , \( 1\) , \( 1523 a - 4963\) , \( 58801 a - 119051\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(1523a-4963\right){x}+58801a-119051$
36864.2-t7 36864.2-t \(\Q(\sqrt{-11}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.598116621$ $0.247860194$ 8.367242985 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 341 a - 5458\) , \( -12688 a + 156649\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(341a-5458\right){x}-12688a+156649$
36864.2-bg7 36864.2-bg \(\Q(\sqrt{-11}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.997645777$ $0.247860194$ 8.367242985 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 341 a - 5458\) , \( 12688 a - 156649\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(341a-5458\right){x}+12688a-156649$
36963.4-a7 36963.4-a \(\Q(\sqrt{-11}) \) \( 3^{3} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.735952803$ $0.188206788$ 3.940368569 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( 5229 a + 523\) , \( 54338 a + 296805\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(5229a+523\right){x}+54338a+296805$
36963.6-a7 36963.6-a \(\Q(\sqrt{-11}) \) \( 3^{3} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.683633151$ $0.188206788$ 8.361328871 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a + 1\) , \( a - 1\) , \( 1\) , \( -2833 a - 6524\) , \( 143616 a + 171542\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2833a-6524\right){x}+143616a+171542$
36963.7-a7 36963.7-a \(\Q(\sqrt{-11}) \) \( 3^{3} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.604541439$ $0.188206788$ 8.361328871 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 3776 a - 8656\) , \( 184807 a - 238615\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(3776a-8656\right){x}+184807a-238615$
36963.9-a7 36963.9-a \(\Q(\sqrt{-11}) \) \( 3^{3} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.169941003$ $0.188206788$ 3.940368569 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a\) , \( a + 1\) , \( a + 1\) , \( -5511 a + 3995\) , \( 112100 a - 333917\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-5511a+3995\right){x}+112100a-333917$
40401.4-a7 40401.4-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 67^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.828122650$ $0.242247538$ 6.811012775 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[1\) , \( a\) , \( a\) , \( -3129 a - 452\) , \( -95320 a + 86415\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-3129a-452\right){x}-95320a+86415$
40401.6-a7 40401.6-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 67^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.662498120$ $0.242247538$ 6.811012775 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 3314 a - 2534\) , \( -83871 a - 44865\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(3314a-2534\right){x}-83871a-44865$
42849.7-c7 42849.7-c \(\Q(\sqrt{-11}) \) \( 3^{4} \cdot 23^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.137819795$ 0.664867708 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a\) , \( -a\) , \( 1\) , \( -5855 a - 11268\) , \( -404272 a - 336280\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-5855a-11268\right){x}-404272a-336280$
42849.9-d7 42849.9-d \(\Q(\sqrt{-11}) \) \( 3^{4} \cdot 23^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.137819795$ 0.664867708 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 7528 a - 15593\) , \( -493230 a + 549059\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(7528a-15593\right){x}-493230a+549059$
45369.4-a7 45369.4-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 71^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.235324746$ 0.283812322 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[1\) , \( 1\) , \( a + 1\) , \( -1593 a + 6071\) , \( -81345 a - 68971\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-1593a+6071\right){x}-81345a-68971$
45369.6-a7 45369.6-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 71^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.235324746$ 0.283812322 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( 886 a + 5272\) , \( -99807 a + 110753\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(886a+5272\right){x}-99807a+110753$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.