Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
46656.4-d1
46656.4-d
$1$
$1$
\(\Q(\sqrt{-11}) \)
$2$
$[0, 1]$
46656.4
\( 2^{6} \cdot 3^{6} \)
\( 2^{16} \cdot 3^{20} \)
$4.35574$
$(-a), (a-1), (2)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$1$
\( 2 \)
$1.971619719$
$0.874861983$
4.160603619
\( 48 a + 1584 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 27 a - 54\) , \( 54\bigr] \)
${y}^2={x}^{3}+\left(27a-54\right){x}+54$
46656.4-k1
46656.4-k
$1$
$1$
\(\Q(\sqrt{-11}) \)
$2$
$[0, 1]$
46656.4
\( 2^{6} \cdot 3^{6} \)
\( 2^{16} \cdot 3^{8} \)
$4.35574$
$(-a), (a-1), (2)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$1$
\( 2 \cdot 3 \)
$0.384644815$
$2.624585950$
7.305258393
\( 48 a + 1584 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 3 a - 6\) , \( -2\bigr] \)
${y}^2={x}^{3}+\left(3a-6\right){x}-2$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.