Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
2880.4-c4 2880.4-c \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.322634104$ 1.595156748 \( \frac{4735750624}{16875} a + \frac{648744976}{1875} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 49 a - 48\) , \( 153 a + 36\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(49a-48\right){x}+153a+36$
11520.4-ba4 11520.4-ba \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.322634104$ 4.785470245 \( \frac{4735750624}{16875} a + \frac{648744976}{1875} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 49 a - 48\) , \( -153 a - 36\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(49a-48\right){x}-153a-36$
14400.6-j4 14400.6-j \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.551656790$ $0.591499953$ 4.427657523 \( \frac{4735750624}{16875} a + \frac{648744976}{1875} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 48 a + 392\) , \( -1780 a + 1976\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(48a+392\right){x}-1780a+1976$
25920.6-e4 25920.6-e \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{4} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.462279456$ $0.440878034$ 3.932843707 \( \frac{4735750624}{16875} a + \frac{648744976}{1875} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 441 a - 435\) , \( -4572 a - 538\bigr] \) ${y}^2={x}^{3}+\left(441a-435\right){x}-4572a-538$
34560.4-s4 34560.4-s \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3^{3} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.763623156$ 0.920964178 \( \frac{4735750624}{16875} a + \frac{648744976}{1875} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -146 a - 3\) , \( -837 a + 810\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-146a-3\right){x}-837a+810$
34560.4-bz4 34560.4-bz \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3^{3} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.704258208$ $0.763623156$ 7.783158984 \( \frac{4735750624}{16875} a + \frac{648744976}{1875} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -146 a - 3\) , \( 837 a - 810\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-146a-3\right){x}+837a-810$
34560.6-h4 34560.6-h \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3^{3} \cdot 5 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.051310059$ $0.763623156$ 3.872875619 \( \frac{4735750624}{16875} a + \frac{648744976}{1875} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -99 a + 243\) , \( -387 a - 1098\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-99a+243\right){x}-387a-1098$
34560.6-bj4 34560.6-bj \(\Q(\sqrt{-11}) \) \( 2^{8} \cdot 3^{3} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.763623156$ 1.841928356 \( \frac{4735750624}{16875} a + \frac{648744976}{1875} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -99 a + 243\) , \( 387 a + 1098\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-99a+243\right){x}+387a+1098$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.