| Label |
Base field |
Conductor norm |
Conductor label |
Isogeny class |
Weierstrass coefficients |
| 27.2-a6 |
\(\Q(\sqrt{-11}) \)
|
27 |
27.2 |
27.2-a |
\( \bigl[a\) , \( a\) , \( a + 1\) , \( 3 a + 30\) , \( 51 a - 94\bigr] \) |
| 27.3-a6 |
\(\Q(\sqrt{-11}) \)
|
27 |
27.3 |
27.3-a |
\( \bigl[1\) , \( a + 1\) , \( a\) , \( 20 a - 4\) , \( -31 a - 50\bigr] \) |
| 675.4-c6 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.4 |
675.4-c |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 93 a - 99\) , \( -649 a + 322\bigr] \) |
| 675.6-a6 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.6 |
675.6-a |
\( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -97 a + 66\) , \( -64 a + 926\bigr] \) |
| 675.7-a6 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.7 |
675.7-a |
\( \bigl[a\) , \( -1\) , \( 1\) , \( 8 a - 166\) , \( 174 a + 951\bigr] \) |
| 675.9-c6 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.9 |
675.9-c |
\( \bigl[a + 1\) , \( -a\) , \( a\) , \( -29 a + 172\) , \( 598 a - 360\bigr] \) |
| 1089.2-c6 |
\(\Q(\sqrt{-11}) \)
|
1089 |
1089.2 |
1089.2-c |
\( \bigl[a + 1\) , \( 0\) , \( 1\) , \( 51 a + 57\) , \( 49 a + 565\bigr] \) |
| 2304.2-d6 |
\(\Q(\sqrt{-11}) \)
|
2304 |
2304.2 |
2304.2-d |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -74 a - 85\) , \( 743 a - 467\bigr] \) |
| 2304.2-h6 |
\(\Q(\sqrt{-11}) \)
|
2304 |
2304.2 |
2304.2-h |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( -74 a - 85\) , \( -743 a + 467\bigr] \) |
| 4761.4-b6 |
\(\Q(\sqrt{-11}) \)
|
4761 |
4761.4 |
4761.4-b |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( -151 a + 59\) , \( -471 a + 1865\bigr] \) |
| 4761.6-b6 |
\(\Q(\sqrt{-11}) \)
|
4761 |
4761.6 |
4761.6-b |
\( \bigl[1\) , \( 0\) , \( a + 1\) , \( -14 a - 243\) , \( 639 a + 1243\bigr] \) |
| 6912.2-n6 |
\(\Q(\sqrt{-11}) \)
|
6912 |
6912.2 |
6912.2-n |
\( \bigl[0\) , \( a\) , \( 0\) , \( 66 a + 477\) , \( -2303 a + 5186\bigr] \) |
| 6912.3-r6 |
\(\Q(\sqrt{-11}) \)
|
6912 |
6912.3 |
6912.3-r |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 309 a - 57\) , \( 2855 a + 2178\bigr] \) |
| 8649.4-c6 |
\(\Q(\sqrt{-11}) \)
|
8649 |
8649.4 |
8649.4-c |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 201 a - 153\) , \( 1812 a - 678\bigr] \) |
| 8649.6-c6 |
\(\Q(\sqrt{-11}) \)
|
8649 |
8649.6 |
8649.6-c |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -28 a + 347\) , \( -1860 a + 1736\bigr] \) |
| 9801.3-l6 |
\(\Q(\sqrt{-11}) \)
|
9801 |
9801.3 |
9801.3-l |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 462 a + 523\) , \( -803 a - 17174\bigr] \) |
| 16875.13-bc4 |
\(\Q(\sqrt{-11}) \)
|
16875 |
16875.13 |
16875.13-bc |
\( \bigl[1\) , \( -a\) , \( a\) , \( 483 a - 89\) , \( -5631 a - 3210\bigr] \) |
| 16875.8-ba4 |
\(\Q(\sqrt{-11}) \)
|
16875 |
16875.8 |
16875.8-ba |
\( \bigl[a\) , \( 0\) , \( 1\) , \( 102 a + 747\) , \( 4897 a - 10470\bigr] \) |
| 19881.4-a4 |
\(\Q(\sqrt{-11}) \)
|
19881 |
19881.4 |
19881.4-a |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 66 a - 533\) , \( 348 a + 5154\bigr] \) |
| 19881.6-b4 |
\(\Q(\sqrt{-11}) \)
|
19881 |
19881.6 |
19881.6-b |
\( \bigl[a + 1\) , \( 1\) , \( 1\) , \( -300 a + 268\) , \( 22 a + 5798\bigr] \) |
| 20736.3-bi4 |
\(\Q(\sqrt{-11}) \)
|
20736 |
20736.3 |
20736.3-bi |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -675 a - 759\) , \( -17956 a + 11354\bigr] \) |
| 20736.3-bl4 |
\(\Q(\sqrt{-11}) \)
|
20736 |
20736.3 |
20736.3-bl |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -675 a - 759\) , \( 17956 a - 11354\bigr] \) |
| 27225.4-f4 |
\(\Q(\sqrt{-11}) \)
|
27225 |
27225.4 |
27225.4-f |
\( \bigl[1\) , \( a\) , \( 0\) , \( 226 a - 581\) , \( 2143 a - 7386\bigr] \) |
| 27225.6-c4 |
\(\Q(\sqrt{-11}) \)
|
27225 |
27225.6 |
27225.6-c |
\( \bigl[a\) , \( a - 1\) , \( a + 1\) , \( -279 a + 523\) , \( -2524 a - 3889\bigr] \) |
| 31329.4-b4 |
\(\Q(\sqrt{-11}) \)
|
31329 |
31329.4 |
31329.4-b |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -365 a - 32\) , \( -3543 a + 6992\bigr] \) |
| 31329.6-b4 |
\(\Q(\sqrt{-11}) \)
|
31329 |
31329.6 |
31329.6-b |
\( \bigl[a\) , \( -a + 1\) , \( 1\) , \( -137 a - 533\) , \( 4125 a + 2117\bigr] \) |
| 36864.2-t4 |
\(\Q(\sqrt{-11}) \)
|
36864 |
36864.2 |
36864.2-t |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -299 a - 338\) , \( -5008 a + 3177\bigr] \) |
| 36864.2-bg4 |
\(\Q(\sqrt{-11}) \)
|
36864 |
36864.2 |
36864.2-bg |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( -299 a - 338\) , \( 5008 a - 3177\bigr] \) |
| 36963.4-a4 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.4 |
36963.4-a |
\( \bigl[1\) , \( a - 1\) , \( 1\) , \( 619 a - 947\) , \( -10942 a + 14709\bigr] \) |
| 36963.6-a4 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.6 |
36963.6-a |
\( \bigl[a + 1\) , \( a - 1\) , \( 1\) , \( -723 a + 196\) , \( -6112 a + 21686\bigr] \) |
| 36963.7-a4 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.7 |
36963.7-a |
\( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -114 a - 1136\) , \( 7879 a + 11879\bigr] \) |
| 36963.9-a4 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.9 |
36963.9-a |
\( \bigl[a\) , \( a + 1\) , \( a + 1\) , \( -371 a + 1225\) , \( 11800 a + 1649\bigr] \) |
| 40401.4-a4 |
\(\Q(\sqrt{-11}) \)
|
40401 |
40401.4 |
40401.4-a |
\( \bigl[1\) , \( a\) , \( a\) , \( -379 a + 558\) , \( -2554 a - 6741\bigr] \) |
| 40401.6-a4 |
\(\Q(\sqrt{-11}) \)
|
40401 |
40401.6 |
40401.6-a |
\( \bigl[a\) , \( a - 1\) , \( 0\) , \( 214 a - 744\) , \( 1395 a - 9735\bigr] \) |
| 42849.7-c4 |
\(\Q(\sqrt{-11}) \)
|
42849 |
42849.7 |
42849.7-c |
\( \bigl[a\) , \( -a\) , \( 1\) , \( -1355 a + 522\) , \( 13544 a - 54400\bigr] \) |
| 42849.9-d4 |
\(\Q(\sqrt{-11}) \)
|
42849 |
42849.9 |
42849.9-d |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( -122 a - 2183\) , \( -17274 a - 33547\bigr] \) |
| 45369.4-a4 |
\(\Q(\sqrt{-11}) \)
|
45369 |
45369.4 |
45369.4-a |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( 197 a + 601\) , \( 2835 a - 10405\bigr] \) |
| 45369.6-a4 |
\(\Q(\sqrt{-11}) \)
|
45369 |
45369.6 |
45369.6-a |
\( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( 426 a + 102\) , \( -3987 a - 6373\bigr] \) |