| Label |
Base field |
Conductor norm |
Conductor label |
Isogeny class |
Weierstrass coefficients |
| 27.2-a3 |
\(\Q(\sqrt{-11}) \)
|
27 |
27.2 |
27.2-a |
\( \bigl[a\) , \( a\) , \( a + 1\) , \( -2 a\) , \( -2 a + 2\bigr] \) |
| 27.3-a3 |
\(\Q(\sqrt{-11}) \)
|
27 |
27.3 |
27.3-a |
\( \bigl[1\) , \( a + 1\) , \( a\) , \( 1\) , \( 3\bigr] \) |
| 675.4-c3 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.4 |
675.4-c |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -2 a + 6\) , \( 11 a + 7\bigr] \) |
| 675.6-a3 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.6 |
675.6-a |
\( \bigl[1\) , \( -a - 1\) , \( 0\) , \( 3 a - 9\) , \( 10 a - 7\bigr] \) |
| 675.7-a3 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.7 |
675.7-a |
\( \bigl[a\) , \( -1\) , \( 1\) , \( 3 a + 4\) , \( 4 a - 19\bigr] \) |
| 675.9-c3 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.9 |
675.9-c |
\( \bigl[a + 1\) , \( -a\) , \( a\) , \( -4 a - 3\) , \( -5 a - 9\bigr] \) |
| 1089.2-c3 |
\(\Q(\sqrt{-11}) \)
|
1089 |
1089.2 |
1089.2-c |
\( \bigl[a + 1\) , \( 0\) , \( 1\) , \( -4 a + 2\) , \( 5 a - 7\bigr] \) |
| 2304.2-d3 |
\(\Q(\sqrt{-11}) \)
|
2304 |
2304.2 |
2304.2-d |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 6 a - 5\) , \( -9 a - 3\bigr] \) |
| 2304.2-h3 |
\(\Q(\sqrt{-11}) \)
|
2304 |
2304.2 |
2304.2-h |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( 6 a - 5\) , \( 9 a + 3\bigr] \) |
| 4761.4-b3 |
\(\Q(\sqrt{-11}) \)
|
4761 |
4761.4 |
4761.4-b |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( 4 a - 11\) , \( 20 a - 12\bigr] \) |
| 4761.6-b3 |
\(\Q(\sqrt{-11}) \)
|
4761 |
4761.6 |
4761.6-b |
\( \bigl[1\) , \( 0\) , \( a + 1\) , \( 6 a + 2\) , \( 6 a - 31\bigr] \) |
| 6912.2-n3 |
\(\Q(\sqrt{-11}) \)
|
6912 |
6912.2 |
6912.2-n |
\( \bigl[0\) , \( a\) , \( 0\) , \( -14 a - 3\) , \( 49 a + 2\bigr] \) |
| 6912.3-r3 |
\(\Q(\sqrt{-11}) \)
|
6912 |
6912.3 |
6912.3-r |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -11 a + 23\) , \( -9 a - 94\bigr] \) |
| 8649.4-c3 |
\(\Q(\sqrt{-11}) \)
|
8649 |
8649.4 |
8649.4-c |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -4 a + 17\) , \( -14 a - 31\bigr] \) |
| 8649.6-c3 |
\(\Q(\sqrt{-11}) \)
|
8649 |
8649.6 |
8649.6-c |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -8 a - 8\) , \( 24 a + 8\bigr] \) |
| 9801.3-l3 |
\(\Q(\sqrt{-11}) \)
|
9801 |
9801.3 |
9801.3-l |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -33 a + 28\) , \( -110 a + 250\bigr] \) |
| 16875.13-bc5 |
\(\Q(\sqrt{-11}) \)
|
16875 |
16875.13 |
16875.13-bc |
\( \bigl[1\) , \( -a\) , \( a\) , \( -17 a + 36\) , \( -6 a + 165\bigr] \) |
| 16875.8-ba5 |
\(\Q(\sqrt{-11}) \)
|
16875 |
16875.8 |
16875.8-ba |
\( \bigl[a\) , \( 0\) , \( 1\) , \( -23 a - 3\) , \( -103 a + 30\bigr] \) |
| 19881.4-a5 |
\(\Q(\sqrt{-11}) \)
|
19881 |
19881.4 |
19881.4-a |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 11 a + 12\) , \( 46 a - 87\bigr] \) |
| 19881.6-b5 |
\(\Q(\sqrt{-11}) \)
|
19881 |
19881.6 |
19881.6-b |
\( \bigl[a + 1\) , \( 1\) , \( 1\) , \( 5 a - 27\) , \( 38 a - 84\bigr] \) |
| 20736.3-bi5 |
\(\Q(\sqrt{-11}) \)
|
20736 |
20736.3 |
20736.3-bi |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 45 a - 39\) , \( 188 a + 266\bigr] \) |
| 20736.3-bl5 |
\(\Q(\sqrt{-11}) \)
|
20736 |
20736.3 |
20736.3-bl |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 45 a - 39\) , \( -188 a - 266\bigr] \) |
| 27225.4-f5 |
\(\Q(\sqrt{-11}) \)
|
27225 |
27225.4 |
27225.4-f |
\( \bigl[1\) , \( a\) , \( 0\) , \( 6 a + 24\) , \( -57 a + 39\bigr] \) |
| 27225.6-c5 |
\(\Q(\sqrt{-11}) \)
|
27225 |
27225.6 |
27225.6-c |
\( \bigl[a\) , \( a - 1\) , \( a + 1\) , \( -4 a - 27\) , \( -27 a + 137\bigr] \) |
| 31329.4-b5 |
\(\Q(\sqrt{-11}) \)
|
31329 |
31329.4 |
31329.4-b |
\( \bigl[1\) , \( 0\) , \( 1\) , \( 15 a - 27\) , \( 75 a - 14\bigr] \) |
| 31329.6-b5 |
\(\Q(\sqrt{-11}) \)
|
31329 |
31329.6 |
31329.6-b |
\( \bigl[a\) , \( -a + 1\) , \( 1\) , \( 18 a - 3\) , \( -7 a - 109\bigr] \) |
| 36864.2-t5 |
\(\Q(\sqrt{-11}) \)
|
36864 |
36864.2 |
36864.2-t |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 21 a - 18\) , \( 48 a + 105\bigr] \) |
| 36864.2-bg5 |
\(\Q(\sqrt{-11}) \)
|
36864 |
36864.2 |
36864.2-bg |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( 21 a - 18\) , \( -48 a - 105\bigr] \) |
| 36963.4-a5 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.4 |
36963.4-a |
\( \bigl[1\) , \( a - 1\) , \( 1\) , \( -a + 58\) , \( 196 a + 33\bigr] \) |
| 36963.6-a5 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.6 |
36963.6-a |
\( \bigl[a + 1\) , \( a - 1\) , \( 1\) , \( 22 a - 59\) , \( 162 a - 142\bigr] \) |
| 36963.7-a5 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.7 |
36963.7-a |
\( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 31 a + 9\) , \( 38 a - 329\bigr] \) |
| 36963.9-a5 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.9 |
36963.9-a |
\( \bigl[a\) , \( a + 1\) , \( a + 1\) , \( -16 a - 45\) , \( -83 a - 265\bigr] \) |
| 40401.4-a5 |
\(\Q(\sqrt{-11}) \)
|
40401 |
40401.4 |
40401.4-a |
\( \bigl[1\) , \( a\) , \( a\) , \( a - 37\) , \( -53 a + 152\bigr] \) |
| 40401.6-a5 |
\(\Q(\sqrt{-11}) \)
|
40401 |
40401.6 |
40401.6-a |
\( \bigl[a\) , \( a - 1\) , \( 0\) , \( 9 a + 26\) , \( -77 a + 64\bigr] \) |
| 42849.7-c5 |
\(\Q(\sqrt{-11}) \)
|
42849 |
42849.7 |
42849.7-c |
\( \bigl[a\) , \( -a\) , \( 1\) , \( 40 a - 108\) , \( -478 a + 464\bigr] \) |
| 42849.9-d5 |
\(\Q(\sqrt{-11}) \)
|
42849 |
42849.9 |
42849.9-d |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( 58 a + 22\) , \( -183 a + 851\bigr] \) |
| 45369.4-a5 |
\(\Q(\sqrt{-11}) \)
|
45369 |
45369.4 |
45369.4-a |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( -23 a + 6\) , \( -108 a + 81\bigr] \) |
| 45369.6-a5 |
\(\Q(\sqrt{-11}) \)
|
45369 |
45369.6 |
45369.6-a |
\( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( -19 a + 32\) , \( -24 a + 141\bigr] \) |