| Label |
Base field |
Conductor norm |
Conductor label |
Isogeny class |
Weierstrass coefficients |
| 11.1-a3 |
\(\Q(\sqrt{-11}) \)
|
11 |
11.1 |
11.1-a |
\( \bigl[0\) , \( -1\) , \( 1\) , \( 0\) , \( 0\bigr] \) |
| 275.1-a3 |
\(\Q(\sqrt{-11}) \)
|
275 |
275.1 |
275.1-a |
\( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 0\) , \( a - 3\bigr] \) |
| 275.3-a3 |
\(\Q(\sqrt{-11}) \)
|
275 |
275.3 |
275.3-a |
\( \bigl[0\) , \( a + 1\) , \( 1\) , \( 2 a - 1\) , \( -3\bigr] \) |
| 891.3-d3 |
\(\Q(\sqrt{-11}) \)
|
891 |
891.3 |
891.3-d |
\( \bigl[0\) , \( 0\) , \( 1\) , \( -3\) , \( -5\bigr] \) |
| 1089.1-c3 |
\(\Q(\sqrt{-11}) \)
|
1089 |
1089.1 |
1089.1-c |
\( \bigl[0\) , \( a\) , \( 1\) , \( 4 a - 12\) , \( -18 a + 25\bigr] \) |
| 1089.3-c3 |
\(\Q(\sqrt{-11}) \)
|
1089 |
1089.3 |
1089.3-c |
\( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -4 a - 8\) , \( 18 a + 7\bigr] \) |
| 2816.1-c3 |
\(\Q(\sqrt{-11}) \)
|
2816 |
2816.1 |
2816.1-c |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -5\) , \( -13\bigr] \) |
| 6875.3-b3 |
\(\Q(\sqrt{-11}) \)
|
6875 |
6875.3 |
6875.3-b |
\( \bigl[0\) , \( 1\) , \( 1\) , \( -8\) , \( 19\bigr] \) |
| 15059.1-a3 |
\(\Q(\sqrt{-11}) \)
|
15059 |
15059.1 |
15059.1-a |
\( \bigl[0\) , \( 1\) , \( 1\) , \( -7 a + 8\) , \( 4 a - 39\bigr] \) |
| 15059.3-a3 |
\(\Q(\sqrt{-11}) \)
|
15059 |
15059.3 |
15059.3-a |
\( \bigl[0\) , \( 1\) , \( 1\) , \( 7 a + 1\) , \( -4 a - 35\bigr] \) |
| 22275.7-i3 |
\(\Q(\sqrt{-11}) \)
|
22275 |
22275.7 |
22275.7-i |
\( \bigl[0\) , \( 0\) , \( 1\) , \( -9 a + 6\) , \( -19 a + 52\bigr] \) |
| 22275.9-i3 |
\(\Q(\sqrt{-11}) \)
|
22275 |
22275.9 |
22275.9-i |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 9 a - 3\) , \( 19 a + 33\bigr] \) |
| 25344.1-j3 |
\(\Q(\sqrt{-11}) \)
|
25344 |
25344.1 |
25344.1-j |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -5 a + 15\) , \( -26 a - 39\bigr] \) |
| 25344.1-q3 |
\(\Q(\sqrt{-11}) \)
|
25344 |
25344.1 |
25344.1-q |
\( \bigl[0\) , \( a\) , \( 0\) , \( -5 a + 15\) , \( 26 a + 39\bigr] \) |
| 25344.3-i3 |
\(\Q(\sqrt{-11}) \)
|
25344 |
25344.3 |
25344.3-i |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( 5 a + 10\) , \( 26 a - 65\bigr] \) |
| 25344.3-p3 |
\(\Q(\sqrt{-11}) \)
|
25344 |
25344.3 |
25344.3-p |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 5 a + 10\) , \( -26 a + 65\bigr] \) |
| 26411.1-c3 |
\(\Q(\sqrt{-11}) \)
|
26411 |
26411.1 |
26411.1-c |
\( \bigl[0\) , \( 1\) , \( 1\) , \( -16\) , \( -66\bigr] \) |
| 27225.1-c3 |
\(\Q(\sqrt{-11}) \)
|
27225 |
27225.1 |
27225.1-c |
\( \bigl[0\) , \( -a\) , \( 1\) , \( -29 a - 12\) , \( 238 a - 163\bigr] \) |
| 27225.3-e3 |
\(\Q(\sqrt{-11}) \)
|
27225 |
27225.3 |
27225.3-e |
\( \bigl[0\) , \( a\) , \( 1\) , \( 26 a + 21\) , \( 70 a - 415\bigr] \) |
| 27225.7-e3 |
\(\Q(\sqrt{-11}) \)
|
27225 |
27225.7 |
27225.7-e |
\( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -26 a + 47\) , \( -70 a - 345\bigr] \) |
| 27225.9-c3 |
\(\Q(\sqrt{-11}) \)
|
27225 |
27225.9 |
27225.9-c |
\( \bigl[0\) , \( a - 1\) , \( 1\) , \( 29 a - 41\) , \( -238 a + 75\bigr] \) |
| 30899.1-a3 |
\(\Q(\sqrt{-11}) \)
|
30899 |
30899.1 |
30899.1-a |
\( \bigl[0\) , \( a + 1\) , \( 1\) , \( 9 a + 7\) , \( 20 a - 77\bigr] \) |
| 30899.3-a3 |
\(\Q(\sqrt{-11}) \)
|
30899 |
30899.3 |
30899.3-a |
\( \bigl[0\) , \( -a - 1\) , \( 1\) , \( -7 a + 15\) , \( -12 a - 72\bigr] \) |
| 30976.1-j3 |
\(\Q(\sqrt{-11}) \)
|
30976 |
30976.1 |
30976.1-j |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( a + 58\) , \( 228 a - 143\bigr] \) |
| 30976.1-o3 |
\(\Q(\sqrt{-11}) \)
|
30976 |
30976.1 |
30976.1-o |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( a + 58\) , \( -228 a + 143\bigr] \) |
| 45056.1-e3 |
\(\Q(\sqrt{-11}) \)
|
45056 |
45056.1 |
45056.1-e |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -1\) , \( -1\bigr] \) |
| 45056.1-n3 |
\(\Q(\sqrt{-11}) \)
|
45056 |
45056.1 |
45056.1-n |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -1\) , \( 1\bigr] \) |