Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
26244.5-a1
26244.5-a
$2$
$3$
\(\Q(\sqrt{-11}) \)
$2$
$[0, 1]$
26244.5
\( 2^{2} \cdot 3^{8} \)
\( 2^{4} \cdot 3^{12} \)
$3.77218$
$(-a), (a-1), (2)$
$2$
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$3$
3B.1.1
$1$
\( 2 \cdot 3^{2} \)
$0.427153329$
$3.305583379$
6.811700614
\( -\frac{35937}{4} \)
\( \bigl[1\) , \( -1\) , \( 0\) , \( -6\) , \( 8\bigr] \)
${y}^2+{x}{y}={x}^{3}-{x}^{2}-6{x}+8$
26244.5-d1
26244.5-d
$2$
$3$
\(\Q(\sqrt{-11}) \)
$2$
$[0, 1]$
26244.5
\( 2^{2} \cdot 3^{8} \)
\( 2^{4} \cdot 3^{24} \)
$3.77218$
$(-a), (a-1), (2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$3$
3B.1.2
$4$
\( 2 \)
$1$
$1.101861126$
5.315578076
\( -\frac{35937}{4} \)
\( \bigl[1\) , \( -1\) , \( 1\) , \( -56\) , \( -161\bigr] \)
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-56{x}-161$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.