| Label |
Base field |
Conductor norm |
Conductor label |
Isogeny class |
Weierstrass coefficients |
| 27.2-a1 |
\(\Q(\sqrt{-11}) \)
|
27 |
27.2 |
27.2-a |
\( \bigl[a\) , \( a\) , \( a + 1\) , \( -7 a + 15\) , \( -3 a - 13\bigr] \) |
| 27.3-a1 |
\(\Q(\sqrt{-11}) \)
|
27 |
27.3 |
27.3-a |
\( \bigl[1\) , \( a + 1\) , \( a\) , \( 5 a + 11\) , \( -4 a + 22\bigr] \) |
| 675.4-c1 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.4 |
675.4-c |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 38 a + 21\) , \( -2 a + 199\bigr] \) |
| 675.6-a1 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.6 |
675.6-a |
\( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -32 a - 39\) , \( 181 a + 11\bigr] \) |
| 675.7-a1 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.7 |
675.7-a |
\( \bigl[a\) , \( -1\) , \( 1\) , \( 38 a - 61\) , \( 138 a - 75\bigr] \) |
| 675.9-c1 |
\(\Q(\sqrt{-11}) \)
|
675 |
675.9 |
675.9-c |
\( \bigl[a + 1\) , \( -a\) , \( a\) , \( -44 a + 52\) , \( 43 a - 300\bigr] \) |
| 1089.2-c1 |
\(\Q(\sqrt{-11}) \)
|
1089 |
1089.2 |
1089.2-c |
\( \bigl[a + 1\) , \( 0\) , \( 1\) , \( -4 a + 57\) , \( 115 a - 29\bigr] \) |
| 2304.2-d1 |
\(\Q(\sqrt{-11}) \)
|
2304 |
2304.2 |
2304.2-d |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 6 a - 85\) , \( 55 a - 275\bigr] \) |
| 2304.2-h1 |
\(\Q(\sqrt{-11}) \)
|
2304 |
2304.2 |
2304.2-h |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( 6 a - 85\) , \( -55 a + 275\bigr] \) |
| 4761.4-b1 |
\(\Q(\sqrt{-11}) \)
|
4761 |
4761.4 |
4761.4-b |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( -41 a - 76\) , \( 266 a + 167\bigr] \) |
| 4761.6-b1 |
\(\Q(\sqrt{-11}) \)
|
4761 |
4761.6 |
4761.6-b |
\( \bigl[1\) , \( 0\) , \( a + 1\) , \( 51 a - 108\) , \( 295 a - 326\bigr] \) |
| 6912.2-n1 |
\(\Q(\sqrt{-11}) \)
|
6912 |
6912.2 |
6912.2-n |
\( \bigl[0\) , \( a\) , \( 0\) , \( -94 a + 237\) , \( 513 a + 1202\bigr] \) |
| 6912.3-r1 |
\(\Q(\sqrt{-11}) \)
|
6912 |
6912.3 |
6912.3-r |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 69 a + 183\) , \( 647 a - 1230\bigr] \) |
| 8649.4-c1 |
\(\Q(\sqrt{-11}) \)
|
8649 |
8649.4 |
8649.4-c |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 71 a + 72\) , \( 181 a - 849\bigr] \) |
| 8649.6-c1 |
\(\Q(\sqrt{-11}) \)
|
8649 |
8649.6 |
8649.6-c |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -83 a + 122\) , \( -46 a + 770\bigr] \) |
| 9801.3-l1 |
\(\Q(\sqrt{-11}) \)
|
9801 |
9801.3 |
9801.3-l |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -33 a + 523\) , \( -2585 a + 349\bigr] \) |
| 16875.13-bc2 |
\(\Q(\sqrt{-11}) \)
|
16875 |
16875.13 |
16875.13-bc |
\( \bigl[1\) , \( -a\) , \( a\) , \( 108 a + 286\) , \( -1506 a + 2790\bigr] \) |
| 16875.8-ba2 |
\(\Q(\sqrt{-11}) \)
|
16875 |
16875.8 |
16875.8-ba |
\( \bigl[a\) , \( 0\) , \( 1\) , \( -148 a + 372\) , \( -853 a - 2220\bigr] \) |
| 19881.4-a2 |
\(\Q(\sqrt{-11}) \)
|
19881 |
19881.4 |
19881.4-a |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 131 a - 173\) , \( 909 a - 405\bigr] \) |
| 19881.6-b2 |
\(\Q(\sqrt{-11}) \)
|
19881 |
19881.6 |
19881.6-b |
\( \bigl[a + 1\) , \( 1\) , \( 1\) , \( -115 a - 92\) , \( 810 a - 34\bigr] \) |
| 20736.3-bi2 |
\(\Q(\sqrt{-11}) \)
|
20736 |
20736.3 |
20736.3-bi |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 45 a - 759\) , \( -820 a + 8330\bigr] \) |
| 20736.3-bl2 |
\(\Q(\sqrt{-11}) \)
|
20736 |
20736.3 |
20736.3-bl |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 45 a - 759\) , \( 820 a - 8330\bigr] \) |
| 27225.4-f2 |
\(\Q(\sqrt{-11}) \)
|
27225 |
27225.4 |
27225.4-f |
\( \bigl[1\) , \( a\) , \( 0\) , \( 171 a - 86\) , \( -750 a - 1149\bigr] \) |
| 27225.6-c2 |
\(\Q(\sqrt{-11}) \)
|
27225 |
27225.6 |
27225.6-c |
\( \bigl[a\) , \( a - 1\) , \( a + 1\) , \( -169 a + 28\) , \( -984 a + 1556\bigr] \) |
| 31329.4-b2 |
\(\Q(\sqrt{-11}) \)
|
31329 |
31329.4 |
31329.4-b |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -60 a - 257\) , \( 585 a + 1550\bigr] \) |
| 31329.6-b2 |
\(\Q(\sqrt{-11}) \)
|
31329 |
31329.6 |
31329.6-b |
\( \bigl[a\) , \( -a + 1\) , \( 1\) , \( 93 a - 308\) , \( 993 a - 1855\bigr] \) |
| 36864.2-t2 |
\(\Q(\sqrt{-11}) \)
|
36864 |
36864.2 |
36864.2-t |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 21 a - 338\) , \( -144 a + 2601\bigr] \) |
| 36864.2-bg2 |
\(\Q(\sqrt{-11}) \)
|
36864 |
36864.2 |
36864.2-bg |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( 21 a - 338\) , \( 144 a - 2601\bigr] \) |
| 36963.4-a2 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.4 |
36963.4-a |
\( \bigl[1\) , \( a - 1\) , \( 1\) , \( 324 a + 28\) , \( 860 a + 4521\bigr] \) |
| 36963.6-a2 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.6 |
36963.6-a |
\( \bigl[a + 1\) , \( a - 1\) , \( 1\) , \( -178 a - 404\) , \( 2082 a + 3170\bigr] \) |
| 36963.7-a2 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.7 |
36963.7-a |
\( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 231 a - 536\) , \( 2953 a - 3652\bigr] \) |
| 36963.9-a2 |
\(\Q(\sqrt{-11}) \)
|
36963 |
36963.9 |
36963.9-a |
\( \bigl[a\) , \( a + 1\) , \( a + 1\) , \( -341 a + 250\) , \( 1768 a - 4978\bigr] \) |
| 40401.4-a2 |
\(\Q(\sqrt{-11}) \)
|
40401 |
40401.4 |
40401.4-a |
\( \bigl[1\) , \( a\) , \( a\) , \( -194 a - 27\) , \( -1591 a + 1497\bigr] \) |
| 40401.6-a2 |
\(\Q(\sqrt{-11}) \)
|
40401 |
40401.6 |
40401.6-a |
\( \bigl[a\) , \( a - 1\) , \( 0\) , \( 204 a - 159\) , \( -1404 a - 864\bigr] \) |
| 42849.7-c2 |
\(\Q(\sqrt{-11}) \)
|
42849 |
42849.7 |
42849.7-c |
\( \bigl[a\) , \( -a\) , \( 1\) , \( -365 a - 693\) , \( -6130 a - 5584\bigr] \) |
| 42849.9-d2 |
\(\Q(\sqrt{-11}) \)
|
42849 |
42849.9 |
42849.9-d |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( 463 a - 968\) , \( -7986 a + 8816\bigr] \) |
| 45369.4-a2 |
\(\Q(\sqrt{-11}) \)
|
45369 |
45369.4 |
45369.4-a |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( -98 a + 376\) , \( -1317 a - 1012\bigr] \) |
| 45369.6-a2 |
\(\Q(\sqrt{-11}) \)
|
45369 |
45369.6 |
45369.6-a |
\( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( 56 a + 327\) , \( -1695 a + 1634\bigr] \) |