Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
46656.4-a1
46656.4-a
$1$
$1$
\(\Q(\sqrt{-11}) \)
$2$
$[0, 1]$
46656.4
\( 2^{6} \cdot 3^{6} \)
\( 2^{16} \cdot 3^{10} \)
$4.35574$
$(-a), (a-1), (2)$
$2$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
✓
$1$
\( 2^{2} \cdot 3^{2} \)
$0.027699239$
$2.085880476$
5.017107556
\( -3072 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( -12\) , \( 20\bigr] \)
${y}^2={x}^{3}-12{x}+20$
46656.4-n1
46656.4-n
$1$
$1$
\(\Q(\sqrt{-11}) \)
$2$
$[0, 1]$
46656.4
\( 2^{6} \cdot 3^{6} \)
\( 2^{16} \cdot 3^{22} \)
$4.35574$
$(-a), (a-1), (2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
✓
$4$
\( 2^{2} \)
$1$
$0.695293492$
6.708444023
\( -3072 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( -108\) , \( -540\bigr] \)
${y}^2={x}^{3}-108{x}-540$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.