Properties

Label 6.6.703493.1-41.4-e3
Base field 6.6.703493.1
Conductor norm \( 41 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.703493.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 5 x^{4} + 11 x^{3} + 2 x^{2} - 9 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -9, 2, 11, -5, -2, 1]))
 
gp: K = nfinit(Polrev([1, -9, 2, 11, -5, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -9, 2, 11, -5, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{5}-a^{4}-12a^{3}+5a^{2}+14a-1\right){x}{y}+\left(2a^{5}-2a^{4}-11a^{3}+11a^{2}+9a-5\right){y}={x}^{3}+\left(-a^{5}+a^{4}+6a^{3}-6a^{2}-7a+4\right){x}^{2}+\left(-5a^{5}-2a^{4}+29a^{3}-a^{2}-31a-2\right){x}-10a^{5}-2a^{4}+55a^{3}-13a^{2}-49a+5\)
sage: E = EllipticCurve([K([-1,14,5,-12,-1,2]),K([4,-7,-6,6,1,-1]),K([-5,9,11,-11,-2,2]),K([-2,-31,-1,29,-2,-5]),K([5,-49,-13,55,-2,-10])])
 
gp: E = ellinit([Polrev([-1,14,5,-12,-1,2]),Polrev([4,-7,-6,6,1,-1]),Polrev([-5,9,11,-11,-2,2]),Polrev([-2,-31,-1,29,-2,-5]),Polrev([5,-49,-13,55,-2,-10])], K);
 
magma: E := EllipticCurve([K![-1,14,5,-12,-1,2],K![4,-7,-6,6,1,-1],K![-5,9,11,-11,-2,2],K![-2,-31,-1,29,-2,-5],K![5,-49,-13,55,-2,-10]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-a^4-6a^3+4a^2+7a+1)\) = \((a^5-a^4-6a^3+4a^2+7a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 41 \) = \(41\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((8a^5+10a^4-37a^3-56a^2+28a+26)\) = \((a^5-a^4-6a^3+4a^2+7a+1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -4750104241 \) = \(-41^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2361415517723691336}{4750104241} a^{5} + \frac{312405531641926157}{4750104241} a^{4} - \frac{11145383118536595673}{4750104241} a^{3} + \frac{2208505528549032067}{4750104241} a^{2} + \frac{9451172168707485868}{4750104241} a - \frac{1100146408697507811}{4750104241} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-3 a^{5} + 4 a^{4} + 15 a^{3} - 20 a^{2} - 11 a + 15 : -7 a^{5} + 14 a^{4} + 34 a^{3} - 70 a^{2} - 21 a + 55 : 1\right)$
Height \(0.49259532543800074765744061664164434652\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{4} + 4 a^{2} - 1 : -6 a^{5} + 6 a^{4} + 35 a^{3} - 29 a^{2} - 35 a + 10 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.49259532543800074765744061664164434652 \)
Period: \( 4356.8269132172565763499349366187791454 \)
Tamagawa product: \( 6 \)
Torsion order: \(6\)
Leading coefficient: \( 2.55877 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-a^4-6a^3+4a^2+7a+1)\) \(41\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 41.4-e consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.